Free Access
Mov Sport Sci/Sci Mot
Number 106, 2019
Page(s) 27 - 35
Published online 28 May 2019
  • Achten, J., & Jeukendrup, A.E. (2003). Heart rate monitoring: Applications and limitations. Sports Medicine (Auckland, N.Z.) , 33(7), 517–538. [CrossRef] [PubMed] [Google Scholar]
  • Al Haddad, H., Laursen, P.B., Chollet, D., Ahmaidi, S., & Buchheit, M. (2011). Reliability of resting and postexercise heart rate measures. International Journal of Sports Medicine , 32(8), 598–605. [CrossRef] [PubMed] [Google Scholar]
  • Arberet, S., Lemay, M., Renevey, P., Solà, J., Grossenbacher, O., Andries, D., Sartori, D., & Bertschi, M. (2013). Photoplethysmography-based ambulatory heartbeat monitoring embedded into a dedicated bracelet. In Computing in Cardiology Conference (CinC), 2013 (pp. 935–938). [Google Scholar]
  • Bahjaoui-Bouhaddi, M., Henriet, M.T., Cappelle, S., Dumoulin, G., & Regnard, J. (1998). Active standing and passive tilting similarly reduce the slope of spontaneous baroreflex in healthy subjects. Physiological Research , 47(4), 227–235. [PubMed] [Google Scholar]
  • Bailey, J.J., Berson, A.S., Garson, A., Jr, Horan, L.G., Macfarlane, P.W., Mortara, D.W., & Zywietz, C. (1990). Recommendations for standardization and specifications in automated electrocardiography: Bandwidth and digital signal processing. A report for health professionals by an ad hoc writing group of the Committee on Electrocardiography and Cardiac Electrophysiology of the Council on Clinical Cardiology, American Heart Association. Circulation , 81(2), 730–739. [CrossRef] [PubMed] [Google Scholar]
  • Berntson, G.G., Bigger, J.T., Jr, Eckberg, D.L., Grossman, P., Kaufmann, P.G., Malik, M., Nagaraja, H.N., Porges, S.W., Saul, J.P., Stone, P.H., & van der Molen, M.W. (1997). Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology , 34(6), 623–648. [CrossRef] [PubMed] [Google Scholar]
  • Billman, G.E. (2013). The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Frontiers in Physiology , 4. doi: 10.3389/fphys.2013.00026. [Google Scholar]
  • Bland, J.M., & Altman, D.G. (1995). Comparing methods of measurement: Why plotting difference against standard method is misleading. Lancet , 346(8982), 1085–1087. [CrossRef] [PubMed] [Google Scholar]
  • Bouillod, A., Cassirame, J., Bousson, J.M., Sagawa Jr, Y., & Tordi, N. (2015). Acurácia do sistema Suunto para a análise da variabilidade da frequência cardíaca durante um teste de inclinação. Revista Brasileira de Cineantropometria e Desempenho Humano , 17(4), 409. doi: 10.5007/1980-0037.2015v17n4p409. [CrossRef] [Google Scholar]
  • Brateanu, A. (2015). Heart rate variability after myocardial infarction: What we know and what we still need to find out. Current Medical Research and Opinion , 31(10), 1855–1860. [CrossRef] [PubMed] [Google Scholar]
  • Buchheit, M., Millet, G.P., Parisy, A., Pourchez, S., Laursen, P.B., & Ahmaidi, S. (2008). Supramaximal training and postexercise parasympathetic reactivation in adolescents. Medicine and Science in Sports and Exercise , 40(2), 362–371. [CrossRef] [PubMed] [Google Scholar]
  • Capdevila, L., Moreno, J., Movellan, J., Parrado, E., & Ramos-Castro, J. (2012). HRV based health&sport markers using video from the face. Conference Proceedings: …Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2012 (pp. 5646–5649). [Google Scholar]
  • Cassirame, J., Tordi, N., Mourot, L., Rakobowchuk, M., & Regnard, J. (2007). L’utilisation d’un nouveau système d’enregistrement de fréquence cardiaque battement à battement pour l’analyse traditionnelle de variabilité de fréquence cardiaque. Science & Sports , 22(5), 238–242. [Google Scholar]
  • Cassirame, J., Stuckey, M.I., Sheppard, F., & Tordi, N. (2013). Accuracy of the Minicardio system for heart rate variability analysis compared to ECG. The Journal of Sports Medicine and Physical Fitness , 53(3), 248–254. [PubMed] [Google Scholar]
  • Cassirame, J., Tordi, N., Fabre, N., Duc, S., Durand, F., & Mourot, L. (2014). Heart rate variability to assess ventilatory threshold in ski-mountaineering. European Journal of Sport Science , 15(7), 615–622. [CrossRef] [PubMed] [Google Scholar]
  • Cassirame, J., Chevrolat, S., Tordi, N., & Mourot, L. (2015). Précision du périodogramme, quelles conséquences pour l’analyse de la variabilité de la fréquence cardiaque ? In 16e congrès de l’ACAPS. [Google Scholar]
  • Cassirame, J., Vanhaesebrouck, R., Chevrolat, S., & Mourot, L. (2017). Accuracy of the Garmin 920 XT HRM to perform HRV analysis. Australasian Physical & Engineering Sciences in Medicine , 40(4), 831–839. [CrossRef] [PubMed] [Google Scholar]
  • Charlot, K., Cornolo, J., Brugniaux, J.V., Richalet, J.P., & Pichon, A. (2009). Interchangeability between heart rate and photoplethysmography variabilities during sympathetic stimulations. Physiological Measurement , 30(12), 1357–1369. [CrossRef] [PubMed] [Google Scholar]
  • Chuang, C.-C., Ye, J.-J., Lin, W.-C., Lee, K.-T., & Tai, Y.-T. (2015). Photoplethysmography variability as an alternative approach to obtain heart rate variability information in chronic pain patient. Journal of Clinical Monitoring and Computing , 29(6), 801–806. [CrossRef] [PubMed] [Google Scholar]
  • Ellis, R.J., Zhu, B., Koenig, J., Thayer, J.F., & Wang, Y. (2015). A careful look at ECG sampling frequency and R-peak interpolation on short-term measures of heart rate variability. Physiological Measurement , 36(9), 1827–1852. [CrossRef] [PubMed] [Google Scholar]
  • Flatt, A.A., & Esco, M.R. (2013). Validity of the ithleteTM smart phone application for determining ultra-short-term heart rate variability. Journal of Human Kinetics , 39, 85–92. [CrossRef] [PubMed] [Google Scholar]
  • Flatt, A.A., & Esco, M.R. (2015). Smartphone-derived heart rate variability and training load in a female soccer team. International Journal of Sports Physiology and Performance , 10(8), 994–1000. [CrossRef] [PubMed] [Google Scholar]
  • Gamelin, F.-X., Baquet, G., Berthoin, S., & Bosquet, L. (2008). Validity of the polar S810 to measure R-R intervals in children. International Journal of Sports Medicine , 29(2), 134–138. [CrossRef] [PubMed] [Google Scholar]
  • Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. (1996). European Heart Journal, 17(3), 354–381. [Google Scholar]
  • Heathers, J.A.J. (2013). Smartphone-enabled pulse rate variability: An alternative methodology for the collection of heart rate variability in psychophysiological research. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology , 89(3), 297–304. [CrossRef] [Google Scholar]
  • Hejjel, L., & Roth, E. (2004). What is the adequate sampling interval of the ECG signal for heart rate variability analysis in the time domain? Physiological Measurement , 25(6), 1405–1411. [CrossRef] [PubMed] [Google Scholar]
  • Hopkins, W.G., Marshall, S.W., Batterham, A.M., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine and Science in Sports and Exercise , 41(1), 3–13. [CrossRef] [PubMed] [Google Scholar]
  • Johnston, W., & Mendelson, Y. (2005). Extracting heart rate variability from a wearable reflectance pulse oximeter (pp. 157–158). IEEE. doi: 10.1109/NEBC.2005.1431971. [Google Scholar]
  • Kingsley, M., Lewis, M.J., & Marson, R.E. (2005). Comparison of Polar 810s and an ambulatory ECG system for RR interval measurement during progressive exercise. International Journal of Sports Medicine , 26(1), 39–44. [CrossRef] [PubMed] [Google Scholar]
  • Kudat, H., Akkaya, V., Sozen, A.B., Salman, S., Demirel, S., Ozcan, M., Atilgan, D., Yilmaz, M.T., & Guven, O. (2006). Heart rate variability in diabetes patients. The Journal of International Medical Research , 34(3), 291–296. [CrossRef] [PubMed] [Google Scholar]
  • Lu, G., & Yang, F. (2009). Limitations of oximetry to measure heart rate variability measures. Cardiovascular Engineering (Dordrecht, Netherlands) , 9(3), 119–125. [PubMed] [Google Scholar]
  • Merri, M., Farden, D.C., Mottley, J.G., & Titlebaum, E.L. (1990). Sampling frequency of the electrocardiogram for spectral analysis of the heart rate variability. IEEE Transactions on Bio-Medical Engineering , 37(1), 99–106. [CrossRef] [PubMed] [Google Scholar]
  • Moreno, J., Ramos-Castro, J., Movellan, J., Parrado, E., Rodas, G., & Capdevila, L. (2015). Facial Video-Based Photoplethysmography to Detect HRV at Rest. International Journal of Sports Medicine , 36(6), 474–480. [CrossRef] [PubMed] [Google Scholar]
  • Mourot, L., Bouhaddi, M., Perrey, S., Cappelle, S., Henriet, M.-T., Wolf, J.-P., Rouillon, J.D., & Regnard, J. (2004). Decrease in heart rate variability with overtraining: Assessment by the Poincaré plot analysis. Clinical Physiology and Functional Imaging , 24(1), 10–18. [CrossRef] [PubMed] [Google Scholar]
  • Mourot, L., Bouhaddi, M., Perrey, S., Rouillon, J.-D., & Regnard, J. (2004). Quantitative Poincare plot analysis of heart rate variability: Effect of endurance training. European Journal of Applied Physiology , 91(1), 79–87. [CrossRef] [PubMed] [Google Scholar]
  • Mourot, L., Bouhaddi, M., Tordi, N., Rouillon, J.-D., & Regnard, J. (2004). Short- and long-term effects of a single bout of exercise on heart rate variability: Comparison between constant and interval training exercises. European Journal of Applied Physiology , 92(4–5), 508–517. [CrossRef] [PubMed] [Google Scholar]
  • Mourot, L, Tordi, N., Bouhaddi, M., Teffaha, D., Monpere, C., & Regnard, J. (2011). Heart rate variability to assess ventilatory thresholds: Reliable in cardiac disease? European Journal of Cardiovascular Prevention and Rehabilitation: Official Journal of the European Society of Cardiology, Working Groups on Epidemiology & Prevention and Cardiac Rehabilitation and Exercise Physiology , 19(6), 1272–1280. [Google Scholar]
  • Parak, J., Tarniceriu, A., Renevey, P., Bertschi, M., Delgado-Gonzalo, R., & Korhonen, I. (2015). Evaluation of the beat-to-beat detection accuracy of PulseOn wearable optical heart rate monitor. Conference Proceedings: …Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2015 (pp. 8099–8102). [Google Scholar]
  • Peng, R.-C., Zhou, X.-L., Lin, W.-H., & Zhang, Y.-T. (2015). Extraction of Heart Rate Variability from Smartphone Photoplethysmograms. Computational and Mathematical Methods in Medicine , 2015. doi: 10.1155/2015/516826. [Google Scholar]
  • Plews, D.J., Laursen, P.B., Kilding, A.E., & Buchheit, M. (2012). Heart rate variability in elite triathletes, is variation in variability the key to effective training? A case comparison. European Journal of Applied Physiology , 112(11), 3729–3741. [CrossRef] [PubMed] [Google Scholar]
  • Rincon Soler, A.I., Silva, L.E.V., Fazan, R., & Murta, L.O. (2018). The impact of artifact correction methods of RR series on heart rate variability parameters. Journal of Applied Physiology (Bethesda, Md.: 1985) , 124(3), 646–652. [CrossRef] [Google Scholar]
  • Schäfer, A., & Vagedes, J. (2013). How accurate is pulse rate variability as an estimate of heart rate variability? A review on studies comparing photoplethysmographic technology with an electrocardiogram. International Journal of Cardiology , 166(1), 15–29. [CrossRef] [PubMed] [Google Scholar]
  • Schmitt, L., Regnard, J., Desmarets, M., Mauny, F., Mourot, L., Fouillot, J.-P., Coulmy, N., & Millet, G. (2013). Fatigue shifts and scatters heart rate variability in elite endurance athletes. PloS One , 8(8), e71588. [CrossRef] [PubMed] [Google Scholar]
  • Scully, C.G., Lee, J., Meyer, J., Gorbach, A.M., Granquist-Fraser, D., Mendelson, Y., & Chon, K.H. (2012). Physiological parameter monitoring from optical recordings with a mobile phone. IEEE Transactions on Bio-Medical Engineering , 59(2), 303–306. [Google Scholar]
  • Selvaraj, N., Jaryal, A., Santhosh, J., Deepak, K.K., & Anand, S. (2008). Assessment of heart rate variability derived from finger-tip photoplethysmography as compared to electrocardiography. Journal of Medical Engineering & Technology , 32(6), 479–484. [CrossRef] [PubMed] [Google Scholar]
  • Singh, B., Manjit, S., & Vijay Kumar, B. (2014). Sample entropy based HRV: Effect of ECG sampling frequency. Biomedical Science and Engineering , 2–4, 68–72. [Google Scholar]
  • Tarassenko, L., Villarroel, M., Guazzi, A., Jorge, J., Clifton, D.A., & Pugh, C. (2014). Non-contact video-based vital sign monitoring using ambient light and auto-regressive models. Physiological Measurement , 35(5), 807. doi: 10.1088/0967-3334/35/5/807. [CrossRef] [PubMed] [Google Scholar]
  • Tarvainen, M.P., Niskanen, J.-P., Lipponen, J.A., Ranta-Aho, P.O., & Karjalainen, P.A. (2014). Kubios HRV – heart rate variability analysis software. Computer Methods and Programs in Biomedicine , 113(1), 210–220. [CrossRef] [PubMed] [Google Scholar]
  • Uijen, G.J., de Weerd, J.P., & Vendrik, A.J. (1979). Accuracy of QRS detection in relation to the analysis of high-frequency components in the electrocardiogram. Medical & Biological Engineering & Computing , 17(4), 492–502. [CrossRef] [PubMed] [Google Scholar]
  • Vasconcellos, F.V.A., Seabra, A., Cunha, F.A., Montenegro, R.A., Bouskela, E., & Farinatti, P. (2015). Heart rate variability assessment with fingertip photoplethysmography and polar RS800cx as compared with electrocardiography in obese adolescents. Blood Pressure Monitoring , 20(6), 351–360. [CrossRef] [PubMed] [Google Scholar]
  • Weippert, M., Kumar, M., Kreuzfeld, S., Arndt, D., Rieger, A., & Stoll, R. (2010). Comparison of three mobile devices for measuring R-R intervals and heart rate variability: Polar S810i, Suunto t6 and an ambulatory ECG system. European Journal of Applied Physiology , 109(4), 779–786. [CrossRef] [PubMed] [Google Scholar]
  • Zahorska-Markiewicz, B., Kuagowska, E., Kucio, C., & Klin, M. (1993). Heart rate variability in obesity. International Journal of Obesity and Related Metabolic Disorders: Journal of the International Association for the Study of Obesity , 17(1), 21–23. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.