Issue
Mov Sport Sci/Sci Mot
Number 115, 2022
Page(s) 25 - 32
DOI https://doi.org/10.1051/sm/2021020
Published online 11 January 2022
  • Andersen, L.P., Werner, M.U., Rosenkilde, M.M., Harpsøe, N.G., Fuglsang, H., Rosenberg, J., & Gögenur, I. (2016). Pharmacokinetics of oral and intravenous melatonin in healthy volunteers. BMC Pharmacology and Toxicology, 17(1), 1–5. [Google Scholar]
  • Atkinson, G., Holder, A., Robertson, C., Gant, N., Drust, B., Reilly, T., & Waterhouse, J. (2005a). Effects of melatonin on the thermoregulatory responses to intermittent exercise. Journal of Pineal Research, 39(4), 353–359. [CrossRef] [PubMed] [Google Scholar]
  • Atkinson, G., Jones, H., Edwards, B., & Waterhouse, J. (2005b). Effects of daytime ingestion of melatonin on short-term athletic performance. Ergonomics, 48(11–14), 1512–1522. [CrossRef] [PubMed] [Google Scholar]
  • Avloniti, A., Chatzinikolaou, A., Deli, C.K., Vlachopoulos, D., Gracia-Marco, L., Leontsini, D., Draganidis, D., Jamurtas, A.Z., Mastorakos, G., & Fatouros, I.G. (2017). Exercise-induced oxidative stress responses in the pediatric population. Antioxidants, 6(1), 6. [CrossRef] [Google Scholar]
  • Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44(1), 276–287. [CrossRef] [PubMed] [Google Scholar]
  • Benot, S., Gobema, R., Reiter, R.J., Garcia-Mauriño, S., Osuna, C., & Guerrero, J.M. (1999). Physiological levels of melatonin contribute to the antioxidant capacity of human serum. Journal of Pineal Research, 27(1), 59–64. [CrossRef] [PubMed] [Google Scholar]
  • Brandenberger, K.J., Ingalls, C.P., Rupp, J.C., & Doyle, J.A. (2018). Consumption of a 5-mg melatonin supplement does not affect 32.2-km cycling time trial performance. The Journal of Strength & Conditioning Research, 32(10), 2872–2877. [CrossRef] [PubMed] [Google Scholar]
  • Cagnacci, A., Arangino, S., Angiolucci, M., Maschio, E., Longu, G., & Metis, G.B. (1997). Potentially beneficial cardiovascular effects of melatonin administration in women. Journal of Pineal Research, 22(1), 16–19. [CrossRef] [PubMed] [Google Scholar]
  • Cohen, J. (1992). Quantitative methods in psychology: A power primer. Psychological Bulletin, 112, 1155–1159. [Google Scholar]
  • Dominguez-Rodriguez, A., & Abreu-Gonzalez, P. (2010). Myocardial ischemia-reperfusion injury: Possible role of melatonin. World Journal of Cardiology, 2(8), 233. [CrossRef] [PubMed] [Google Scholar]
  • Dominguez-Rodriguez, A., Abreu-Gonzalez, P., Piccolo, R., Galasso, G., & Reiter, R.J. (2016). Melatonin is associated with reverse remodeling after cardiac resynchronization therapy in patients with heart failure and ventricular dyssynchrony. International Journal of Cardiology, 221, 359–363. [CrossRef] [PubMed] [Google Scholar]
  • Dominguez-Rodriguez, A., Abreu-Gonzalez, P., & Reiter, R.J. (2012). Melatonin and cardioprotection in the acute myocardial infarction: a promising cardioprotective agent. International Journal of Cardiology, 158(2), 309–310. [CrossRef] [PubMed] [Google Scholar]
  • Donato, A.J., Uberoi, A., Bailey, D.M., Walter Wray, D., & Richardson, R.S. (2010). Exercise-induced brachial artery vasodilation: effects of antioxidants and exercise training in elderly men. American Journal of Physiology-Heart and Circulatory Physiology, 298(2), H671–H678. [CrossRef] [PubMed] [Google Scholar]
  • Escames, G., Ozturk, G., Baño-Otálora, B., Pozo, M.J., Madrid, J.A., Reiter, R. J., Serrano, E., Concepción, M., & Acuña-Castroviejo, D. (2012). Exercise and melatonin in humans: Reciprocal benefits. Journal of Pineal Research, 52(1), 1–11. [CrossRef] [PubMed] [Google Scholar]
  • Franco, L., Doria, D., & Mattiucci, F. (2001). Effect of acute exercise on plasma nitric oxide level in humans. Medical Principles and Practice, 10(2), 106–109. [CrossRef] [Google Scholar]
  • Geary, G.G., Duckles, S.P., & Krause, D.N. (1998). Effect of melatonin in the rat tail artery: role of K+ channels and endothelial factors. British Journal of Pharmacology, 123(8), 1533–1540. [CrossRef] [PubMed] [Google Scholar]
  • Halliwell, B., & Gutteridge, J.M. (2015). Free radicals in biology and medicine. USA: Oxford University Press. [CrossRef] [Google Scholar]
  • Hardeland, R., Coto-Montes, A., & Poeggeler, B. (2003). Circadian rhythms, oxidative stress, and antioxidative defense mechanisms. Chronobiology international, 20(6), 921–962. [CrossRef] [PubMed] [Google Scholar]
  • Horiuchi, M., & Fukuoka, Y. (2019). Absence of cardiovascular drift during prolonged arm-crank exercise in individuals with spinal cord injury. Spinal Cord, 57(11), 942–952. [CrossRef] [PubMed] [Google Scholar]
  • Horne, J.A., & Östberg, O. (1976). A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. International Journal of Chronobiology, 4(2), 97–110. [PubMed] [Google Scholar]
  • Johnson, J.M., & Proppe, D.W. (2010). Cardiovascular adjustments to heat stress. Comprehensive Physiology, 215–243. https://doi.org/10.1002/cphy.cp040111. [Google Scholar]
  • Laflamme, A.-K., Wu, L., Foucart, S., & de Champlain, J. (1998). Impaired basal sympathetic tone and α1-adrenergic responsiveness in association with the hypotensive effect of melatonin in spontaneously hypertensive rats. American Journal of Hypertension, 11(2), 219–229. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Kruk, J., Aboul-Enein, B.H., & Duchnik, E. (2021). Exercise-induced oxidative stress and melatonin supplementation: current evidence. The Journal of Physiological Sciences, 71(1), 1–19. [CrossRef] [PubMed] [Google Scholar]
  • Marrin, K., Drust, B., Gregson, W., & Atkinson, G. (2013). A meta-analytic approach to quantify the dose-response relationship between melatonin and core temperature. European Journal of Applied Physiology, 113(9), 2323–2329. [CrossRef] [PubMed] [Google Scholar]
  • McLellan, T.M., Smith, I.F., Gannon, G.A., & Zamecnik, J. (2000). Melatonin has no effect on tolerance to uncompensable heat stress in man. European Journal of Applied Physiology, 83(4), 336–343. [CrossRef] [PubMed] [Google Scholar]
  • Meagher, E., & Rader, D.J. (2001). Antioxidant therapy and atherosclerosis: animal and human studies. Trends in Cardiovascular Medicine, 11(3–4), 162–165. [CrossRef] [PubMed] [Google Scholar]
  • Okatani, Y., Wakatsuki, A., Watanabe, K., Taniguchi, K., & Fukaya, T. (2001). Weak vasoconstrictor activity of melatonin in human umbilical artery: relation to nitric oxide-scavenging action. European Journal of Pharmacology, 417(1–2), 125–129. [CrossRef] [PubMed] [Google Scholar]
  • Öztürk, O., & Gümüşlü, S. (2004). Age-related changes of antioxidant enzyme activities, glutathione status and lipid peroxidation in rat erythrocytes after heat stress. Life Sciences, 75(13), 1551–1565. [CrossRef] [PubMed] [Google Scholar]
  • Pozo, D., Reiter, R.J., Calvo, J.R., & Guerrero, J.M. (1994). Physiological concentrations of melatonin inhibit nitric oxide synthase in rat cerebellum. Life Sciences, 55(24), PL455–PL460. [CrossRef] [PubMed] [Google Scholar]
  • Richardson, R.S., Donato, A.J., Uberoi, A., Wray, D.W., Lawrenson, L., Nishiyama, S., & Bailey, D.M. (2007). Exercise-induced brachial artery vasodilation: role of free radicals. American Journal of Physiology-Heart and Circulatory Physiology, 292(3), H1516–H1522. [CrossRef] [PubMed] [Google Scholar]
  • Rowell, L.B. (1974). Human cardiovascular adjustments to exercise and thermal stress. Physiological Reviews, 54(1), 75–159. [CrossRef] [PubMed] [Google Scholar]
  • Silva, C., Tamura, E., Macedo, S., Cecon, E., Bueno-Alves, L., Farsky, S., Ferreira, Z.S., & Markus, R. (2007). Melatonin inhibits nitric oxide production by microvascular endothelial cells in vivo and in vitro. British Journal of Pharmacology, 151(2), 195–205. [CrossRef] [PubMed] [Google Scholar]
  • Souissi, A., Haddad, M., Dergaa, I., Saad, H.B., & Chamari, K. (2021). A new perspective on cardiovascular drift during prolonged exercise. Life Sciences, 287, 120109. [CrossRef] [PubMed] [Google Scholar]
  • Souissi, A., Yousfi, N., Souissi, N., Haddad, M., & Driss, T. (2020). The effect of diurnal variation on the performance of exhaustive continuous and alternated-intensity cycling exercises. PLoS One, 15(12), e0244191. [Google Scholar]
  • Tamura, E.K., Silva, C.L., & Markus, R.P. (2006). Melatonin inhibits endothelial nitric oxide production in vitro. Journal of Pineal Research, 41(3), 267–274. [CrossRef] [PubMed] [Google Scholar]
  • Taylor, W.F., Johnson, J.M., O’Leary, D., & Park, M.K. (1984). Effect of high local temperature on reflex cutaneous vasodilation. Journal of Applied Physiology, 57(1), 191–196. [CrossRef] [Google Scholar]
  • Trinity, J.D., Broxterman, R.M., & Richardson, R.S. (2016). Regulation of exercise blood flow: role of free radicals. Free Radical Biology and Medicine, 98, 90–102. [CrossRef] [Google Scholar]
  • Viswanathan, M., Hissa, R., & George, J.C. (1986). Suppression of sympathetic nervous system by short photoperiod and melatonin in the Syrian hamster. Life Sciences, 38(1), 73–79. [CrossRef] [PubMed] [Google Scholar]
  • Wang, M., Yokotani, K., Nakamura, K., Murakami, Y., Okada, S., & Osumi, Y. (1999). Melatonin inhibits the central sympatho-adrenomedullary outflow in rats. The Japanese Journal of Pharmacology, 81(1), 29–33. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.