Free Access
Publication ahead of print
Journal
Mov Sport Sci/Sci Mot
DOI https://doi.org/10.1051/sm/2020007
Published online 20 May 2020
  • Amirkalali, B., Hosseini, S., Heshmat, R., & Larijani, B. (2008). Comparison of Harris Benedict and Mifflin-ST Jeor equations with indirect calorimetry in evaluating resting energy expenditure. Indian Journal of Medical Sciences, 62(7), 283–290. doi:10.4103/0019-5359.42024. [PubMed] [Google Scholar]
  • Antunes, H., Santos, R., Boscolo, R., Bueno, O., & Mello, M. (2005). Analysis of resting metabolic rate and body composition in elderly males before and after six months of endurance exercise. Revista Brasileira de Medicina do Esporte, 11, 71–75. [Google Scholar]
  • Astorino, T.A., & Cottrell, T. (2012). Reliability and validity of the velotron racermate cycle ergometer to measure anaerobic power. International Journal of Sports Medicine, 33(3), 205–210. doi:10.1055/s-0031-1291219. [PubMed] [Google Scholar]
  • Bastiaans, J.J., van Diemen, A.B., Veneberg, T., & Jeukendrup, A.E. (2001). The effects of replacing a portion of endurance training by explosive strength training on performance in trained cyclists. European Journal of Applied Physiology, 86(1), 79–84. doi:10.1007/s004210100507. [PubMed] [Google Scholar]
  • Buckinx, F., Landi, F., Cesari, M., Fieding, R.A., Visser, M., Engelke, K., & Kanis, J.A. (2018). The authors reply: “Dual energy X-ray absorptiometry: gold standard for muscle mass?” by Scafoglieri et al. Journal of Cachexia, Sarcopenia and Muscle, 9(4), 788–790. doi:10.1002/jcsm.12329. [PubMed] [Google Scholar]
  • Campbell, W.W., Crim, M.C., Young, V.R., & Evans, W.J. (1994). Increased energy requirements and changes in body composition with resistance training in older adults. American Journal of Clinical Nutrition, 60(2), 167–175. doi:10.1093/ajcn/60.2.167. [Google Scholar]
  • Candow, D.G., Chilibeck, P.D., Abeysekara, S., & Zello, G.A. (2011). Short-term heavy resistance training eliminates age-related deficits in muscle mass and strength in healthy older males. Journal of Strength and Conditioning Research, 25(2), 326–333. doi:10.1519/JSC.0b013e3181bf43c8. [PubMed] [Google Scholar]
  • Cantrell, G.S., Schilling, B.K., Paquette, M.R., & Murlasits, Z. (2014). Maximal strength, power, and aerobic endurance adaptations to concurrent strength and sprint interval training. European Journal of Applied Physiology, 114(4), 763–771. doi:10.1007/s00421-013-2811-8. [PubMed] [Google Scholar]
  • Compher, C., Frankenfield, D., Keim, N., & Roth-Yousey, L. (2006). Best practice methods to apply to measurement of resting metabolic rate in adults: a systematic review. Journal of the American Dietetic Association, 106(6), 881–903. doi:10.1016/j.jada.2006.02.009. [PubMed] [Google Scholar]
  • Curry, T.B., Somaraju, M., Hines, C.N., Groenewald, C.B., Miles, J.M., Joyner, M.J., & Charkoudian, N. (2013). Sympathetic support of energy expenditure and sympathetic nervous system activity after gastric bypass surgery. Obesity (Silver Spring), 21(3), 480–485. doi:10.1002/oby.20106. [Google Scholar]
  • Cycling Analytics. (2019). How does your cycling power output compare? Availaible from https://www.cyclinganalytics.com/blog/2018/06/how-does-your-cycling-power-output-compare. [Google Scholar]
  • Del Vecchio, L., Stanton, R., Macgregor, C., Doering, T., Korhonen, M.T., & Reaburn, P. (2016). Lower limb muscular strength and power characteristics of Veteran road cyclists and age-matched sedentary controls. Gazzetta Medica Italiana, 175, 123–129. [Google Scholar]
  • Del Vecchio, L., Stanton, R., Reaburn, P., Macgregor, C., Meerkin, J., Villegas, J., & Korhonen, M.T. (2019). Effects of combined strength and sprint training on lean mass, strength, power, and sprint performance in masters road cyclists. Journal of Strength and Conditioning Research, 33(1), 66–79. doi:10.1519/jsc.0000000000001960. [PubMed] [Google Scholar]
  • Dolezal, B.A., & Potteiger, J.A. (1998). Concurrent resistance and endurance training influence basal metabolic rate in nondieting individuals. Journal of Applied Physiology (1985), 85(2), 695–700. doi:10.1152/jappl.1998.85.2.695. [Google Scholar]
  • Harridge, S., Magnusson, G., & Saltin, B. (1997). Life-long endurance-trained elderly men have high aerobic power, but have similar muscle strength to non-active elderly men. Aging, 9(1–2), 80–87. doi:10.1007/bf03340131. [PubMed] [Google Scholar]
  • Hawley, J.A., & Noakes, T.D. (1992). Peak power output predicts maximal oxygen uptake and performance time in trained cyclists. European Journal of Applied Physiology and Occupational Physiology, 65(1), 79–83. doi:10.1007/bf01466278. [PubMed] [Google Scholar]
  • Izquierdo, M., Hakkinen, K., Ibanez, J., Anton, A., Garrues, M., Ruesta, M., & Gorostiaga, E.M. (2003). Effects of strength training on submaximal and maximal endurance performance capacity in middle-aged and older men. Journal of Strength and Conditioning Research, 17(1), 129–139. doi:10.1519/1533-4287(2003)017<0129:eostos>2.0.co;2. [PubMed] [Google Scholar]
  • Johnstone, A.M., Murison, S.D., Duncan, J.S., Rance, K.A., & Speakman, J.R. (2005). Factors influencing variation in basal metabolic rate include fat-free mass, fat mass, age, and circulating thyroxine but not sex, circulating leptin, or triiodothyronine. American Journal of Clinical Nutrition, 82(5), 941–948. doi:10.1093/ajcn/82.5.941. [Google Scholar]
  • Kennis, E., Verschueren, S., Van Roie, E., Thomis, M., Lefevre, J., & Delecluse, C. (2014). Longitudinal impact of aging on muscle quality in middle-aged men. Age (Dordr), 36(4), 9689. doi:10.1007/s11357-014-9689-1. [Google Scholar]
  • Kim, H.Y. (2013). Statistical notes for clinical researchers: assessing normal distribution (2) using skewness and kurtosis. Restorative Dentistry & Endodontics, 38(1), 52–54. doi:10.5395/rde.2013.38.1.52. [PubMed] [Google Scholar]
  • Lemmer, J.T., Ivey, F.M., Ryan, A.S., Martel, G.F., Hurlbut, D.E., Metter, J.E., & Hurley, B.F. (2001). Effect of strength training on resting metabolic rate and physical activity: age and gender comparisons. Medicine and Science in Sports and Exercise, 33(4), 532–541. doi:10.1097/00005768-200104000-00005. [PubMed] [Google Scholar]
  • Loveless, D.J., Weber, C.L., Haseler, L.J., & Schneider, D.A. (2005). Maximal leg-strength training improves cycling economy in previously untrained men. Medicine and Science in Sports and Exercise, 37(7), 1231–1236. doi:10.1249/01.mss.0000170071.33880.f8. [PubMed] [Google Scholar]
  • Luhrmann, P.M., Bender, R., Edelmann-Schafer, B., & Neuhauser-Berthold, M. (2009). Longitudinal changes in energy expenditure in an elderly German population: a 12-year follow-up. European Journal of Clinical Nutrition, 63(8), 986–992. doi:10.1038/ejcn.2009.1. [PubMed] [Google Scholar]
  • Luhrmann, P.M., Edelmann-Schafer, B., & Neuhauser-Berthold, M. (2010). Changes in resting metabolic rate in an elderly German population: cross-sectional and longitudinal data. The Journal of Nutrition, Health & Aging, 14(3), 232–236. doi:10.1007/s12603-010-0055-4. [PubMed] [Google Scholar]
  • Medeiros Nda, S., de Abreu, F.G., Colato, A.S., de Lemos, L.S., Ramis, T.R., Dorneles, G.P., & Dani, C. (2015). Effects of concurrent training on oxidative stress and insulin resistance in obese individuals. Oxidative Medicine and Cellular Longevity, 2015, 697181. doi:10.1155/2015/697181. [Google Scholar]
  • Nana, A., Slater, G.J., Hopkins, W.G., & Burke, L.M. (2012). Effects of daily activities on dual-energy X-ray absorptiometry measurements of body composition in active people. Medicine and Science in Sports and Exercise, 44(1), 180–189. doi:10.1249/MSS.0b013e318228b60e. [PubMed] [Google Scholar]
  • Nieman, D.C., Austin, M.D., Benezra, L., Pearce, S., McInnis, T., Unick, J., & Gross, S.J. (2006). Validation of Cosmed’s FitMate in measuring oxygen consumption and estimating resting metabolic rate. Research in Sports Medicine, 14(2), 89–96. doi:10.1080/15438620600651512. [Google Scholar]
  • Norton, K.I., Norton, L., & Australia, F. (2011). Pre-exercise screening: guide to the Australian adult pre-exercise screening system. Australia: Exercise and Sports Science Australia. [Google Scholar]
  • Oja, P., Kelly, P., Pedisic, Z., Titze, S., Bauman, A., Foster, C., & Stamatakis, E. (2017). Associations of specific types of sports and exercise with all-cause and cardiovascular-disease mortality: a cohort study of 80,306 British adults. British Journal of Sports Medicine, 51(10), 812–817. doi:10.1136/bjsports-2016-096822. [PubMed] [Google Scholar]
  • Peterson, M.D., Sen, A., & Gordon, P.M. (2011). Influence of resistance exercise on lean body mass in aging adults: a meta-analysis. Medicine and Science in Sports and Exercise, 43(2), 249–258. doi:10.1249/MSS.0b013e3181eb6265. [PubMed] [Google Scholar]
  • Piacentini, M.F., De Ioannon, G., Comotto, S., Spedicato, A., Vernillo, G., & La Torre, A. (2013). Concurrent strength and endurance training effects on running economy in master endurance runners. Journal of Strength and Conditioning Research, 27(8), 2295–2303. doi:10.1519/JSC.0b013e3182794485. [PubMed] [Google Scholar]
  • Poehlman, E.T., & Danforth, E., Jr. (1991). Endurance training increases metabolic rate and norepinephrine appearance rate in older individuals. American Journal of Physiology, 261(2 Pt 1), E233–E239. doi:10.1152/ajpendo.1991.261.2.E233. [Google Scholar]
  • Pratley, R., Nicklas, B., Rubin, M., Miller, J., Smith, A., Smith, M., & Goldberg, A. (1994). Strength training increases resting metabolic rate and norepinephrine levels in healthy 50- to 65-yr-old men. Journal of Applied Physiology (1985), 76(1), 133–137. doi:10.1152/jappl.1994.76.1.133. [Google Scholar]
  • Ronnestad, B.R., & Mujika, I. (2014). Optimizing strength training for running and cycling endurance performance: A review. Scandinavian Journal of Medicine and Science in Sports, 24(4), 603–612. doi:10.1111/sms.12104. [Google Scholar]
  • Scafoglieri, A., & Clarys, J.P. (2018). Dual energy X-ray absorptiometry: gold standard for muscle mass? Journal of Cachexia, Sarcopenia and Muscle, 9(4), 786–787. doi:10.1002/jcsm.12308. [PubMed] [Google Scholar]
  • Soysal, P., Ates Bulut, E., Yavuz, I., & Isik, A.T. (2019). Decreased basal metabolic rate can be an objective marker for sarcopenia and frailty in older males. Journal of the American Medical Directors Association, 20(1), 58–63. doi:10.1016/j.jamda.2018.07.001. [PubMed] [Google Scholar]
  • Sullivan, G.M., & Feinn, R. (2012). Using effect size-or why the P value is not enough. Journal of Graduate Medical Education, 4(3), 279–282. doi:10.4300/jgme-d-12-00156.1. [PubMed] [Google Scholar]
  • Sullo, A., Cardinale, P., Brizzi, G., Fabbri, B., & Maffulli, N. (2004). Resting metabolic rate and post-prandial thermogenesis by level of aerobic power in older athletes. Clinical and Experimental Pharmacology and Physiology, 31(4), 202–206. doi:10.1111/j.1440-1681.2004.03979.x. [Google Scholar]
  • Tanaka, H. (2017). Aging of competitive athletes. Gerontology, 63(5), 488–494. doi:10.1159/000477722. [PubMed] [Google Scholar]
  • van Pelt, R.E., Dinneno, F.A., Seals, D.R., & Jones, P.P. (2001). Age-related decline in RMR in physically active men: relation to exercise volume and energy intake. American Journal of Physiology: Endocrinology and Metabolism, 281(3), E633–E639. doi:10.1152/ajpendo.2001.281.3.E633. [Google Scholar]
  • van Pelt, R.E., Jones, P.P., Davy, K.P., Desouza, C.A., Tanaka, H., Davy, B.M., & Seals, D.R. (1997). Regular exercise and the age-related decline in resting metabolic rate in women. Journal of Clinical Endocrinology and Metabolism, 82(10), 3208–3212. doi:10.1210/jcem.82.10.4268. [Google Scholar]
  • Westcott, W.L. (2012). Resistance training is medicine: effects of strength training on health. Current Sports Medicine Reports, 11(4), 209–216. doi:10.1249/JSR.0b013e31825dabb8. [PubMed] [Google Scholar]
  • Widrick, J.J., Trappe, S.W., Costill, D.L., & Fitts, R.H. (1996). Force-velocity and force-power properties of single muscle fibers from elite master runners and sedentary men. American Journal of Physiology, 271(2 Pt 1), C676–C683. doi:10.1152/ajpcell.1996.271.2.C676. [Google Scholar]
  • Wilson, M.M., & Morley, J.E. (2003). Invited review: aging and energy balance. Journal of Applied Physiology (1985), 95(4), 1728–1736. doi:10.1152/japplphysiol.00313.2003. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.