Free Access
Mov Sport Sci/Sci Mot
Number 83, 2014
Page(s) 31 - 39
Published online 19 September 2013
  • Andriacchi, T.P., Anderson, G.B., Fermier, R.W., Stern, D., & Galante, J.O. (1980). A study of lower-limb mechanics during stair-climbing. Journal of Bone Joint Surgery, 62, 749–757. [Google Scholar]
  • Bell, A.L., Brand, R.A., & Pedersen, D.R. (1999). Prediction of hip joint centre location from external landmarks. Human Movement Science, 8, 3–16. [CrossRef] [Google Scholar]
  • Besier, T.F., Sturnieks, D.L, Alderson, J.A., & Lloyd, D.G. (2003). Repeatability of gait data using a functional hip joint centre and a mean helical knee axis. Journal of Biomechanics, 36, 1159–1168. [CrossRef] [PubMed] [Google Scholar]
  • Cappozzo, A. (1984). Gait analysis methodology. Human Movement Science, 3, 27–50. [CrossRef] [Google Scholar]
  • Capozzo, A., Leo, T. & Pedotti, A. (1975). A general computing method for the analysis of human locomotion. Journal of Biomechanics, 8, 307–320. [CrossRef] [PubMed] [Google Scholar]
  • Cappozzo, A., Catani, F., Leardini, A., Benedeti, M.G., & Della, C.U. (1995). Position and orientation in space of bones during movement: Anatomical frame definition and determination. Clinical Biomechanics, 10, 171–178. [CrossRef] [Google Scholar]
  • Cappozzo, A., Cappello, A., Croce, U., & Pensalfini, F. (1997). Surface-marker cluster design criteria for 3-D bone movement reconstruction. IEEE Transactions on Biomedical Engineering, 44, 1165–1174. [CrossRef] [Google Scholar]
  • Della Croce, U., Cappozzo, A., & Kerrigan, D.C. (1999). Pelvis and lower limb anatomical landmark calibration precision and its propagation to bone geometry and joint angles. Medical Biological Engineering Computing, 37, 155–161. [CrossRef] [MathSciNet] [Google Scholar]
  • Growney, E., Meglan, D., Johnson, M., Cahalan, T., & An, K. (1997). Repeated measures of adult normal walking using a video tracking system. Gait & Posture, 6, 147–162. [CrossRef] [Google Scholar]
  • Horton, M.G., & Hall, T.L. (1989). Quadriceps femoris muscle angle: normal values and relationships with gender and selected skeletal measures. Physical Therapy, 69, 897–901. [PubMed] [Google Scholar]
  • Hreljac, A., Marshall, R.N. & Hume, P.A. (2000). Evaluation of lower extremity overuse injury potential in runners. Medecine and Science in Sport and Exercise, 32, 1635–1641. [CrossRef] [Google Scholar]
  • Hsu, R.W., Himeno, S., Coventry, M.B., & Chao, E.Y. (1990). Normal axial alignment of the lower extremity and load-bearing distribution at the knee. Clinical Orthopaedics and Related Research, 255, 215–227. [PubMed] [Google Scholar]
  • Kadaba, M.P., Ramakrishnan, H.K., Wootten, M.E., Gainey, J., Gorton, G., & Cochran, G.V. (1989). Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. Journal of Orthopaedic Research, 7, 849–860. [CrossRef] [Google Scholar]
  • Kirkwood, R.N., Culham, E.G., & Costigan, P. (1999). Radiographic and non-invasive determination of the hip joint center location: effect on hip joint moments. Clinical Biomechanics, 14, 227–235. [CrossRef] [Google Scholar]
  • Leardini, A., Cappozzo, A., Catani, F., Toksvig-Larsen, S., Petitto, A., Sforza, V., Cassanelli, G., & Giannini, S. (1999). Validation of a functional method for the estimation of hip joint centre location. Journal of Biomechanics, 32, 99–103. [CrossRef] [PubMed] [Google Scholar]
  • Marin, F., Mannel, H., Claes, L., & Durselen, L. (2003). Accurate determination of a joint rotation center based on the minimal amplitude point method. Computer Aided Surgery, 8, 30–34. [CrossRef] [Google Scholar]
  • Mizuno, Y., Kumagai, M., Mattessich, S.M., Elias, J.J., Ramrattan, N., Cosgarea, A.J., & Chao, E.Y. (2001). Q-angle influences tibiofemoral and patellofemoral kinematics. Journal of Orthopaedic Research, 19, 834–840. [CrossRef] [Google Scholar]
  • Piazza, S.J., Okita, N., & Cavanagh, P.R. (2001). Accuracy of the functional method of hip joint center location: effects of limited motion and varied implementation. Journal of Biomechanics, 34, 967–973. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Rothman, K.J. (1990). No adjustments are needed for multiple comparisons. Epidemiology, 1, 43–46. [CrossRef] [PubMed] [Google Scholar]
  • Schwartz, M.H., & Rozumalski, A. (2005). A new method for estimating joint parameters from motion data. Journal of Biomechanics, 38, 107–116. [CrossRef] [PubMed] [Google Scholar]
  • Seidel, G.K., Marchinda, D.M., Dijkers, M., & Soutas-Little, R.W. (1995). Hip joint center location from palpable bony landmarks – a cadaver study. Journal of Biomechanics, 28, 995–998. [CrossRef] [PubMed] [Google Scholar]
  • Shea, K.M., Lenhoff, M.W., Otis, J.C., & Backus, S.I. (1997). Validation of a method for location of the hip joint center. Gait & Posture, 5, 157–158. [CrossRef] [Google Scholar]
  • Sinclair, J., Edmundson, C.J., Brooks, D., & Hobbs, S.J. (2011). Evaluation of kinematic methods of identifying gait Events during running. International Journal of Sport Science and Engineering, 5, 188–192. [Google Scholar]
  • Stagni, R., Leardini, A., Cappozzo, A., Grazia Benedetti, M., & Cappello, A. (2000). Effects of hip joint centre mislocation on gait analysis results. Journal of Biomechanics, 33, 1479–1487. [CrossRef] [PubMed] [Google Scholar]
  • Tylkowski, C.M., Simon, S.R., & Mansour, J.M. (1982). Internal rotation gait in spastic cerebral palsy. The Hip, 89–125. [Google Scholar]
  • Weinhandl, J.T. & O’Connor, K.M. (2010). Assessment of a greater trochanter-based method of locating the hip joint center. Journal of Biomechanics, 43, 2633–2636. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.