Free Access
Mov Sport Sci/Sci Mot
Number 90, 2015
Modélisation du mouvement humain par des méthodes numériques d'optimisation - Advanced modelling of human movements using numerical optimisation
Page(s) 19 - 28
Published online 21 January 2013
  • An, K., Chao, E., Cooney, W., & Linscheid, R. (1979). Normative model of human hand for biomechanical analysis. Journal of Biomechanics, 12, 775–788. [CrossRef] [PubMed] [Google Scholar]
  • Bisneto, E., Freitas, M., Leomil de Paula, E., Mattar, R., & Zumiotti, A. (2011). Comparison between proximal row carpectomy and four-corner fusion for treating osteoarthrosis following carpal trauma : a prospective randomized study. Clinics, 66, 51–55. [CrossRef] [PubMed] [Google Scholar]
  • Brand, P., & Hollister, A., (1999). Clinical Mechanics of the Hand. Saint Louis : 3rd edition Mosby. [Google Scholar]
  • Buchholz, B. (1992). Anthropometric data for describing the kinematics of the human hand. Ergonomics, 35, 261–273. [CrossRef] [PubMed] [Google Scholar]
  • Carrozza, M., Cappiello, G., Micera, S., Edin, B., Beccai, L., & Cipriani, C. (2006). Design of a cybernetic hand for perception and action. Biological Cybernetic, 9, 629–644. [Google Scholar]
  • Chao, E., An, K., Cooney, W., & Linscheid, R.L. (1989). Biomechanics of the Hand. Singapore : World Scientific. [Google Scholar]
  • Cholewicki, J., & McGill, S. (1994). EMG assisted optimization : a hybrid approach for estimating muscle forces in an indeterminate biomechanical model. Journal of Biomechanics, 27, 1287–1289. [CrossRef] [PubMed] [Google Scholar]
  • Crowninschield, R., & Brand, R. (1981). A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics, 14, 793–801. [CrossRef] [PubMed] [Google Scholar]
  • Eyler, D., & Markee, J. (1954). The anatomy and function of the intrinsic musculature of the fingers. Journal of Bone and Joint Surgery, 36, 1–18. [Google Scholar]
  • Gagnon, D., Lariviere, C., & Loisek, P. (2001). Comparative ability of EMG, optimization, and hybrid modelling approaches to predict trunk muscle forces and lumbar spine loading during dynamic sagittal plane lifting. Clinical Biomechanics, 16, 359–372. [CrossRef] [Google Scholar]
  • Illert, M., Trauner, M., Weller, E., & Wiedemann, E. (1986). Forearm muscles of man can reverse their function after tendon transfers : an electromyographic study. Neuroscience Letters, 67, 129–134. [CrossRef] [PubMed] [Google Scholar]
  • Karol, S., Kim, Y., Huang, J., Kim, Y., Koh, K., Yoon, B., & Shim, J. (2011). Multi-finger pressing synergies change with the level of extra degrees of freedom. Experimental Brain Research, 208, 359–367. [CrossRef] [PubMed] [Google Scholar]
  • Latash, M. (2000). There is no motor redundancy in human movements. There is motor abundance. Motor Control, 4, 259–260. [PubMed] [Google Scholar]
  • Leffert, R., & Meister, M. (1976). Patterns of neuromuscular activity following tendon transfer in the upper limb : a preliminary study. Journal of hand Surgery, 3, 181–189. [Google Scholar]
  • Leijnse, J., Carter, S., Gupa, A., McCabe, S. (2008). Anatomic basis for individual surface EMG and homogeneous electrostimulation with neuroprostheses of the extensor digitorum communis. Journal of Neurophysiology, 100, 64–75. [CrossRef] [PubMed] [Google Scholar]
  • Lemay, A., & Crago, E. (1996). A dynamic model for simulating movements of the elbow, forearm and wrist. Journal of Biomechanics, 29, 1319–1330. [CrossRef] [PubMed] [Google Scholar]
  • Li, Z., Latash, M., & Zatsiorsky, V. (1998). Force sharing among fingers as a model of the redundancy problem. Experimental Brain Research, 119, 276–286. [CrossRef] [PubMed] [Google Scholar]
  • Martin, J., Zatsiorsky, V., & Latash, M. (2011). Multi-finger interaction during involuntary and voluntary single finger force changes. Experimental Brain Research, 208, 423–435. [CrossRef] [PubMed] [Google Scholar]
  • Quaine, F., Paclet, F., Letué, F., & Moutet, F. (2012). Force sharing and neutral line during finger extension tasks. Human Movement Science, 31, 749–757. [CrossRef] [PubMed] [Google Scholar]
  • Paclet, F., & Quaine, F. (2012). Motor control theories improve biomechanical model of the hand for finger pressing tasks. Journal of Biomechanics, 45, 1246–1251. [CrossRef] [PubMed] [Google Scholar]
  • Rasmussen, J., Damsgaard, M., & Voigt, M. (2001). Muscle recruitment by the min/max criterion-a comparative numerical study. Journal of Biomechanics, 34, 409–415. [CrossRef] [PubMed] [Google Scholar]
  • Sancho-Bru, J., Perez-Gonzalez, A., Vergara-Monedero, M., & Giurintano, D. (2001). A 3-D dynamic model of human finger for studying free movements. Journal of Biomechanics, 34, 1491–500. [CrossRef] [PubMed] [Google Scholar]
  • Schieber, M., & Santello, M. (2004). Hand function : peripheral and central constraints on performance. Journal of Applied Physiology, 96, 2293–2300. [CrossRef] [PubMed] [Google Scholar]
  • Seireg, A., & Arvikar, R. (1973). A mathematical model for evaluation of force in lower extremities of the musculo-skeletal system. Journal of Biomechanics, 6, 313–326. [CrossRef] [PubMed] [Google Scholar]
  • Tsugé, K., & Adachi, N. (1969). tendon transfer for extensor palsy of forearm. Hiroshima Journal of Medicine Sciences, 18, 219–232. [Google Scholar]
  • Valero-Cuevas, F., Zajac, F., & Burgar, C. (1998). Large index-fingertip forces are produced by subject-independent patterns of muscle excitation. Journal of Biomechanics, 31, 693–703. [CrossRef] [PubMed] [Google Scholar]
  • Vigouroux, L., Quaine, F., Labarre-Vila, A., & Moutet, F. (2005). Estimation of finger muscle tendon tensions and pulley forces during specific sport climbing grip techniques. Journal of Biomechanics, 40, 2846–2856. [CrossRef] [Google Scholar]
  • Vigouroux, L., Quaine, F., Labarre-Vila, A., Amarantini, D., & Moutet, F. (2007). Using EMG data to constrain optimization procedure improves finger tendon tension estimations during static fingertip force production. Journal of Biomechanics, 40, 2846–2856. [Google Scholar]
  • Vigouroux, L., Ferry, M., Colloud, F., Paclet, F., Cahouet, V., & Quaine, F. (2008). Is the principle of minimization of secondary moment validated during various fingertip force production conditions? Human Movement Science, 27, 396–407. [CrossRef] [PubMed] [Google Scholar]
  • Zatsiorsky, V., Li, Z., & Latash, M. (2000). Enslaving effects in multi-finger force production. Experimental Brain Research, 131, 187–195. [CrossRef] [PubMed] [Google Scholar]
  • Zatsiorsky, V., Gregory, R., Latash, M. (2002). Force and torque production in static multifinger prehension : biomechanics and control. II. Control in Biological Cybernetic, 87, 40–49. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.