Accès gratuit
Numéro
Mov Sport Sci/Sci Mot
Numéro 90, 2015
Modélisation du mouvement humain par des méthodes numériques d'optimisation - Advanced modelling of human movements using numerical optimisation
Page(s) 19 - 28
DOI https://doi.org/10.1051/sm/2012039
Publié en ligne 21 janvier 2013
  • An, K., Chao, E., Cooney, W., & Linscheid, R. (1979). Normative model of human hand for biomechanical analysis. Journal of Biomechanics, 12, 775–788. [CrossRef] [PubMed] [Google Scholar]
  • Bisneto, E., Freitas, M., Leomil de Paula, E., Mattar, R., & Zumiotti, A. (2011). Comparison between proximal row carpectomy and four-corner fusion for treating osteoarthrosis following carpal trauma : a prospective randomized study. Clinics, 66, 51–55. [CrossRef] [PubMed] [Google Scholar]
  • Brand, P., & Hollister, A., (1999). Clinical Mechanics of the Hand. Saint Louis : 3rd edition Mosby. [Google Scholar]
  • Buchholz, B. (1992). Anthropometric data for describing the kinematics of the human hand. Ergonomics, 35, 261–273. [CrossRef] [PubMed] [Google Scholar]
  • Carrozza, M., Cappiello, G., Micera, S., Edin, B., Beccai, L., & Cipriani, C. (2006). Design of a cybernetic hand for perception and action. Biological Cybernetic, 9, 629–644. [Google Scholar]
  • Chao, E., An, K., Cooney, W., & Linscheid, R.L. (1989). Biomechanics of the Hand. Singapore : World Scientific. [Google Scholar]
  • Cholewicki, J., & McGill, S. (1994). EMG assisted optimization : a hybrid approach for estimating muscle forces in an indeterminate biomechanical model. Journal of Biomechanics, 27, 1287–1289. [CrossRef] [PubMed] [Google Scholar]
  • Crowninschield, R., & Brand, R. (1981). A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics, 14, 793–801. [CrossRef] [PubMed] [Google Scholar]
  • Eyler, D., & Markee, J. (1954). The anatomy and function of the intrinsic musculature of the fingers. Journal of Bone and Joint Surgery, 36, 1–18. [Google Scholar]
  • Gagnon, D., Lariviere, C., & Loisek, P. (2001). Comparative ability of EMG, optimization, and hybrid modelling approaches to predict trunk muscle forces and lumbar spine loading during dynamic sagittal plane lifting. Clinical Biomechanics, 16, 359–372. [CrossRef] [Google Scholar]
  • Illert, M., Trauner, M., Weller, E., & Wiedemann, E. (1986). Forearm muscles of man can reverse their function after tendon transfers : an electromyographic study. Neuroscience Letters, 67, 129–134. [CrossRef] [PubMed] [Google Scholar]
  • Karol, S., Kim, Y., Huang, J., Kim, Y., Koh, K., Yoon, B., & Shim, J. (2011). Multi-finger pressing synergies change with the level of extra degrees of freedom. Experimental Brain Research, 208, 359–367. [CrossRef] [PubMed] [Google Scholar]
  • Latash, M. (2000). There is no motor redundancy in human movements. There is motor abundance. Motor Control, 4, 259–260. [PubMed] [Google Scholar]
  • Leffert, R., & Meister, M. (1976). Patterns of neuromuscular activity following tendon transfer in the upper limb : a preliminary study. Journal of hand Surgery, 3, 181–189. [Google Scholar]
  • Leijnse, J., Carter, S., Gupa, A., McCabe, S. (2008). Anatomic basis for individual surface EMG and homogeneous electrostimulation with neuroprostheses of the extensor digitorum communis. Journal of Neurophysiology, 100, 64–75. [CrossRef] [PubMed] [Google Scholar]
  • Lemay, A., & Crago, E. (1996). A dynamic model for simulating movements of the elbow, forearm and wrist. Journal of Biomechanics, 29, 1319–1330. [CrossRef] [PubMed] [Google Scholar]
  • Li, Z., Latash, M., & Zatsiorsky, V. (1998). Force sharing among fingers as a model of the redundancy problem. Experimental Brain Research, 119, 276–286. [CrossRef] [PubMed] [Google Scholar]
  • Martin, J., Zatsiorsky, V., & Latash, M. (2011). Multi-finger interaction during involuntary and voluntary single finger force changes. Experimental Brain Research, 208, 423–435. [CrossRef] [PubMed] [Google Scholar]
  • Quaine, F., Paclet, F., Letué, F., & Moutet, F. (2012). Force sharing and neutral line during finger extension tasks. Human Movement Science, 31, 749–757. [CrossRef] [PubMed] [Google Scholar]
  • Paclet, F., & Quaine, F. (2012). Motor control theories improve biomechanical model of the hand for finger pressing tasks. Journal of Biomechanics, 45, 1246–1251. [CrossRef] [PubMed] [Google Scholar]
  • Rasmussen, J., Damsgaard, M., & Voigt, M. (2001). Muscle recruitment by the min/max criterion-a comparative numerical study. Journal of Biomechanics, 34, 409–415. [CrossRef] [PubMed] [Google Scholar]
  • Sancho-Bru, J., Perez-Gonzalez, A., Vergara-Monedero, M., & Giurintano, D. (2001). A 3-D dynamic model of human finger for studying free movements. Journal of Biomechanics, 34, 1491–500. [CrossRef] [PubMed] [Google Scholar]
  • Schieber, M., & Santello, M. (2004). Hand function : peripheral and central constraints on performance. Journal of Applied Physiology, 96, 2293–2300. [CrossRef] [PubMed] [Google Scholar]
  • Seireg, A., & Arvikar, R. (1973). A mathematical model for evaluation of force in lower extremities of the musculo-skeletal system. Journal of Biomechanics, 6, 313–326. [CrossRef] [PubMed] [Google Scholar]
  • Tsugé, K., & Adachi, N. (1969). tendon transfer for extensor palsy of forearm. Hiroshima Journal of Medicine Sciences, 18, 219–232. [Google Scholar]
  • Valero-Cuevas, F., Zajac, F., & Burgar, C. (1998). Large index-fingertip forces are produced by subject-independent patterns of muscle excitation. Journal of Biomechanics, 31, 693–703. [CrossRef] [PubMed] [Google Scholar]
  • Vigouroux, L., Quaine, F., Labarre-Vila, A., & Moutet, F. (2005). Estimation of finger muscle tendon tensions and pulley forces during specific sport climbing grip techniques. Journal of Biomechanics, 40, 2846–2856. [CrossRef] [Google Scholar]
  • Vigouroux, L., Quaine, F., Labarre-Vila, A., Amarantini, D., & Moutet, F. (2007). Using EMG data to constrain optimization procedure improves finger tendon tension estimations during static fingertip force production. Journal of Biomechanics, 40, 2846–2856. [Google Scholar]
  • Vigouroux, L., Ferry, M., Colloud, F., Paclet, F., Cahouet, V., & Quaine, F. (2008). Is the principle of minimization of secondary moment validated during various fingertip force production conditions? Human Movement Science, 27, 396–407. [CrossRef] [PubMed] [Google Scholar]
  • Zatsiorsky, V., Li, Z., & Latash, M. (2000). Enslaving effects in multi-finger force production. Experimental Brain Research, 131, 187–195. [CrossRef] [PubMed] [Google Scholar]
  • Zatsiorsky, V., Gregory, R., Latash, M. (2002). Force and torque production in static multifinger prehension : biomechanics and control. II. Control in Biological Cybernetic, 87, 40–49. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.