Accès gratuit
Numéro
Mov Sport Sci/Sci Mot
Numéro 106, 2019
Page(s) 37 - 44
DOI https://doi.org/10.1051/sm/2019017
Publié en ligne 4 juillet 2019
  • Astorino, T.A., Robergs, R.A., Ghiasvand, F., Marks, D., & Burns, S. (2000). Incidence of the oxygen plateau during exercise testing to volitional fatigue. Journal of Exercise Physiolology online , 3(4), 1–12. [Google Scholar]
  • Astorino, T.A., Willey, J., Kinnahan, J., Larsson, S.M., Welch, H., & Dalleck, L.C. (2005). Elucidating determinants of the plateau in oxygen consumption at VO2MAX. British Journal of Sports Medicine , 39, 655–660. [CrossRef] [PubMed] [Google Scholar]
  • Barstow, T.J., & Mole, P. (1991). Linear and non-linear characteristics of oxygen uptake kinetics during heavy exercise. Journal of Applied Physiology , 71(6), 2099–2106. [CrossRef] [PubMed] [Google Scholar]
  • Barstow, T.J., Casaburi, R.R., & Wasserman, K.K. (1993). O2 uptake kinetics and the O2 deficit as related to exercise intensity and blood lactate. Journal of Applied Physiology , 75(2), 755–762. [CrossRef] [PubMed] [Google Scholar]
  • Brittain, C.J., Rossiter, H.B., Kowalchuk, J.M., & Whipp, B.J. (2001). Effect of prior metabolic rate on the kinetics of oxygen uptake during moderate-intensity exercise. European Journal of Applied Physiology , 86(2), 125–134. [CrossRef] [PubMed] [Google Scholar]
  • Buchfuhrer, M.J., Hansen, J.E., Robinson, T.E., Sue, D.Y., Wasserman, K., & Whipp, B.J. (1983). Optimizing the exercise protocol for cardiopulmonary assessment. Journal of Applied Physiology , 55(5), 1558–1564. [CrossRef] [PubMed] [Google Scholar]
  • Burnley, M., Jones, A.M., Carter, H., & Doust, J.H. (2000). Effects of prior heavy exercise on phase II pulmonary oxygen uptake kinetics during heavy exercise. Journal of Applied Physiology , 89(4), 1387–1396. [CrossRef] [PubMed] [Google Scholar]
  • Busso, T., & Robbins, P.A. (1997). Evaluation of estimates of alveolar gas exchange by using a tidally ventilated nonhomogenous lung model. Journal of Applied Physiology , 82(6), 1963–1971. [CrossRef] [PubMed] [Google Scholar]
  • Carlo, C., Michela, C., & Silvia, P. (2011). Algorithms, modelling and VO2 kinetics. European Journal of Applied Physiology , 111(3), 331–342. [Google Scholar]
  • Carter, H., Pringle, J.S.M., Jones, A.M., & Doust, J.H. (2002). Oxygen uptake kinetics during treadmill running across exercise intensity domains. European Journal of Applied Physiology , 86(4), 347–354. [CrossRef] [PubMed] [Google Scholar]
  • Diamond, L.B., Casaburi, R., Wasserman, K., & Whipp, B.J. (1977). Kinetics of gas exchange and ventilation in transitions from rest or prior exercise. Journal of Applied Physiology , 43(4), 704–708. [CrossRef] [PubMed] [Google Scholar]
  • Di Prampero, P.E., Mahler, P.B., Giezendanner, D., & Cerretelli, P. (1989). Effects of priming exercise on VO2 kinetics and O2 deficit at the onset of stepping and cycling. Journal of Applied Physiology , 66(5), 2023–2031. [CrossRef] [PubMed] [Google Scholar]
  • Exercise & Sports Science Australia. (2011). (https://www.essa.org.au/wp-content/uploads/2011/09/Screen-tool-version-v1.1.pdf). [Google Scholar]
  • Gaskill, S.E., Ruby, B.C., Walker, A.J., Sanchez, G.A., Serfass, R.C., & Leon, A.S. (2001). Validity and reliability of combining three methods to determine ventilatory threshold. Medicine and Science in Sport and Exercise , 33(11), 1841–1848. [CrossRef] [Google Scholar]
  • Gerbino, A., Ward, S.A., & Whipp, B.J. (1996). Effects of prior exercise on pulmonary gas-exchange kinetics during high-intensity exercise in humans. Journal of Applied Physiology , 80(1), 99–107. [CrossRef] [PubMed] [Google Scholar]
  • Gimenez, P., & Busso, T. (2008). Implications of breath-by-breath oxygen uptake determination on kinetics assessment during exercise. Respiratory Physiology and Neurobiology , 162(3), 238–241. [CrossRef] [Google Scholar]
  • Hagberg, J.M., Hickson, R.C., Ehsani, A.A., & Holloszy, J.O. (1980). Faster adjustment to and recovery from submaximal exercise in a trained state. Journal of Applied Physiology , 48(2), 218–224. [CrossRef] [PubMed] [Google Scholar]
  • Hickson, R.C., Bomze, H.A., & Holloszy, J.O. (1978). Faster adjustment of O2 uptake to the energy requirement of exercise in the trained state. Journal of Applied Physiology , 44(6), 877–881. [CrossRef] [PubMed] [Google Scholar]
  • Hughson, R.L., & Morrissey, M. (1982). Delayed kinetics of respiratory gas exchange in the transition from prior exercise. Journal of Applied Physiology , 52(4), 921–929. [CrossRef] [PubMed] [Google Scholar]
  • Keir, D.A., Murias, J.M., Paterson, D.H., & Kowalchuck, J.M. (2014). Breath-by-breath pulmonary O2 uptake kinetics: effect of data processing on confidence in estimating model parameters. Experimental Physiology , 99(11), 1511–1522. [CrossRef] [PubMed] [Google Scholar]
  • Koppo, K., Bouckaert, J., & Jones, A. (2004). Effects of training status and exercise intensity on phase II VO2 kinetics. Medicine and Science in Sport and Exercise , 36(2), 225–232. [CrossRef] [Google Scholar]
  • Lamarra, N., Whipp, B.J., Ward, S.A., & Wasserman, K. (1987). Effect of interbreath fluctuations on characterizing exercise gas exchange. Journal of Applied Physiology , 62(5), 2003–2012. [CrossRef] [PubMed] [Google Scholar]
  • Linnarsson, D. (1974). Dynamics of pulmonary gas exchange and heart rate changes at start and end of exercise. Acta Physiologica Scandinavia , 415, 1–68. [Google Scholar]
  • McNulty, C.R., Robergs, R.A., & Morris, D. (2015). Influence of increment magnitude and exercise intensity on VO2 kinetics, time to steady state, and muscle oxygenation. Journal of Exercise Physiology online , 18(5), 37–58. [Google Scholar]
  • Robergs, R.A., & Burnett, A.F. (2003). Methods used to process data from indirect calorimetry and their application to VO2max. Journal of Exercise Physiology online , 6(2), 44–57. [Google Scholar]
  • Robergs, R.A., Dwyer, D., & Astorino, T. (2010). Recommendations for improved data processing from expired gas analysis indirect calorimetry. Sports Medicine , 40(2), 1–17. [CrossRef] [Google Scholar]
  • Rossiter, H.B., Ward, S.A., Doyle, V.L., Howe, F.A., Griffiths, J.R., & Whipp, B.J. (1999). Inferences from pulmonary O2 uptake with respect to intramuscular [phosphocreatine] kinetics during moderate exercise in humans. Journal of Physiology , 518(3), 921–932. [CrossRef] [Google Scholar]
  • Spencer, M.D., Murias, J.M., Grey, T.M., & Paterson, D.H. (2012). Regulation of VO2 kinetics by O2 delivery: insights from acute hypoxia and heavy-intensity priming exercise in young men. Journal of Applied Physiology , 112(6), 1023–1032. [CrossRef] [PubMed] [Google Scholar]
  • Spencer, M.D., Murias, J.M., Lamb, H.P., Kowalchuk, J.M., & Paterson, D.H. (2011). Are the parameters of VO2, heart rate and muscle deoxygenation kinetics affect by serial moderate-intensity exercise transitions in a single day? European Journal of Applied Physiology , 111(4), 591–600. [CrossRef] [PubMed] [Google Scholar]
  • Stirling, J.R., Zakynthinaki, M.S., & Saltin, B. (2005). A model of oxygen uptake kinetics in response to exercise: including a means of calculating oxygen demand/deficit/debt. Bulletin of Mathematical Biology , 67(5), 989–1015. [CrossRef] [PubMed] [Google Scholar]
  • Whipp, B.J. (1971). Rate constant for the kinetics of oxygen uptake during light exercise. Journal of Applied Physiology , 30(2), 261–263. [CrossRef] [PubMed] [Google Scholar]
  • Whipp, B.J., Ward, S.A., Lamarra, N., Davis, J.A., & Wasserman, K. (1982). Parameters of ventilatory and gas exchange dynamics during exercise. Journal of Applied Physiology , 52(6), 1506–1513. [CrossRef] [PubMed] [Google Scholar]
  • Wisen, A., & Wohlfart, B. (2004). Determination of both the time constant of VO2 and ΔVO2/ΔW from a single incremental exercise test: validation and repeatability. Clinical Physiology and Functional Imaging , 24, 257–265. [CrossRef] [PubMed] [Google Scholar]
  • Yoon, B.K., Kravitz, L., & Robergs, R. (2007). VO2max, protocol duration, and the VO2 plateau. Medicine and Science in Sport and Exercise , 39(7), 1186–1192. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.