Free Access
Issue
Mov Sport Sci/Sci Mot
Number 106, 2019
Page(s) 37 - 44
DOI https://doi.org/10.1051/sm/2019017
Published online 04 July 2019
  • Astorino, T.A., Robergs, R.A., Ghiasvand, F., Marks, D., & Burns, S. (2000). Incidence of the oxygen plateau during exercise testing to volitional fatigue. Journal of Exercise Physiolology online , 3(4), 1–12. [Google Scholar]
  • Astorino, T.A., Willey, J., Kinnahan, J., Larsson, S.M., Welch, H., & Dalleck, L.C. (2005). Elucidating determinants of the plateau in oxygen consumption at VO2MAX. British Journal of Sports Medicine , 39, 655–660. [CrossRef] [PubMed] [Google Scholar]
  • Barstow, T.J., & Mole, P. (1991). Linear and non-linear characteristics of oxygen uptake kinetics during heavy exercise. Journal of Applied Physiology , 71(6), 2099–2106. [CrossRef] [PubMed] [Google Scholar]
  • Barstow, T.J., Casaburi, R.R., & Wasserman, K.K. (1993). O2 uptake kinetics and the O2 deficit as related to exercise intensity and blood lactate. Journal of Applied Physiology , 75(2), 755–762. [CrossRef] [PubMed] [Google Scholar]
  • Brittain, C.J., Rossiter, H.B., Kowalchuk, J.M., & Whipp, B.J. (2001). Effect of prior metabolic rate on the kinetics of oxygen uptake during moderate-intensity exercise. European Journal of Applied Physiology , 86(2), 125–134. [CrossRef] [PubMed] [Google Scholar]
  • Buchfuhrer, M.J., Hansen, J.E., Robinson, T.E., Sue, D.Y., Wasserman, K., & Whipp, B.J. (1983). Optimizing the exercise protocol for cardiopulmonary assessment. Journal of Applied Physiology , 55(5), 1558–1564. [CrossRef] [PubMed] [Google Scholar]
  • Burnley, M., Jones, A.M., Carter, H., & Doust, J.H. (2000). Effects of prior heavy exercise on phase II pulmonary oxygen uptake kinetics during heavy exercise. Journal of Applied Physiology , 89(4), 1387–1396. [CrossRef] [PubMed] [Google Scholar]
  • Busso, T., & Robbins, P.A. (1997). Evaluation of estimates of alveolar gas exchange by using a tidally ventilated nonhomogenous lung model. Journal of Applied Physiology , 82(6), 1963–1971. [CrossRef] [PubMed] [Google Scholar]
  • Carlo, C., Michela, C., & Silvia, P. (2011). Algorithms, modelling and VO2 kinetics. European Journal of Applied Physiology , 111(3), 331–342. [CrossRef] [PubMed] [Google Scholar]
  • Carter, H., Pringle, J.S.M., Jones, A.M., & Doust, J.H. (2002). Oxygen uptake kinetics during treadmill running across exercise intensity domains. European Journal of Applied Physiology , 86(4), 347–354. [CrossRef] [PubMed] [Google Scholar]
  • Diamond, L.B., Casaburi, R., Wasserman, K., & Whipp, B.J. (1977). Kinetics of gas exchange and ventilation in transitions from rest or prior exercise. Journal of Applied Physiology , 43(4), 704–708. [CrossRef] [PubMed] [Google Scholar]
  • Di Prampero, P.E., Mahler, P.B., Giezendanner, D., & Cerretelli, P. (1989). Effects of priming exercise on VO2 kinetics and O2 deficit at the onset of stepping and cycling. Journal of Applied Physiology , 66(5), 2023–2031. [CrossRef] [PubMed] [Google Scholar]
  • Exercise & Sports Science Australia. (2011). (https://www.essa.org.au/wp-content/uploads/2011/09/Screen-tool-version-v1.1.pdf). [Google Scholar]
  • Gaskill, S.E., Ruby, B.C., Walker, A.J., Sanchez, G.A., Serfass, R.C., & Leon, A.S. (2001). Validity and reliability of combining three methods to determine ventilatory threshold. Medicine and Science in Sport and Exercise , 33(11), 1841–1848. [CrossRef] [Google Scholar]
  • Gerbino, A., Ward, S.A., & Whipp, B.J. (1996). Effects of prior exercise on pulmonary gas-exchange kinetics during high-intensity exercise in humans. Journal of Applied Physiology , 80(1), 99–107. [CrossRef] [PubMed] [Google Scholar]
  • Gimenez, P., & Busso, T. (2008). Implications of breath-by-breath oxygen uptake determination on kinetics assessment during exercise. Respiratory Physiology and Neurobiology , 162(3), 238–241. [CrossRef] [Google Scholar]
  • Hagberg, J.M., Hickson, R.C., Ehsani, A.A., & Holloszy, J.O. (1980). Faster adjustment to and recovery from submaximal exercise in a trained state. Journal of Applied Physiology , 48(2), 218–224. [CrossRef] [PubMed] [Google Scholar]
  • Hickson, R.C., Bomze, H.A., & Holloszy, J.O. (1978). Faster adjustment of O2 uptake to the energy requirement of exercise in the trained state. Journal of Applied Physiology , 44(6), 877–881. [CrossRef] [PubMed] [Google Scholar]
  • Hughson, R.L., & Morrissey, M. (1982). Delayed kinetics of respiratory gas exchange in the transition from prior exercise. Journal of Applied Physiology , 52(4), 921–929. [CrossRef] [PubMed] [Google Scholar]
  • Keir, D.A., Murias, J.M., Paterson, D.H., & Kowalchuck, J.M. (2014). Breath-by-breath pulmonary O2 uptake kinetics: effect of data processing on confidence in estimating model parameters. Experimental Physiology , 99(11), 1511–1522. [CrossRef] [PubMed] [Google Scholar]
  • Koppo, K., Bouckaert, J., & Jones, A. (2004). Effects of training status and exercise intensity on phase II VO2 kinetics. Medicine and Science in Sport and Exercise , 36(2), 225–232. [CrossRef] [Google Scholar]
  • Lamarra, N., Whipp, B.J., Ward, S.A., & Wasserman, K. (1987). Effect of interbreath fluctuations on characterizing exercise gas exchange. Journal of Applied Physiology , 62(5), 2003–2012. [CrossRef] [PubMed] [Google Scholar]
  • Linnarsson, D. (1974). Dynamics of pulmonary gas exchange and heart rate changes at start and end of exercise. Acta Physiologica Scandinavia , 415, 1–68. [Google Scholar]
  • McNulty, C.R., Robergs, R.A., & Morris, D. (2015). Influence of increment magnitude and exercise intensity on VO2 kinetics, time to steady state, and muscle oxygenation. Journal of Exercise Physiology online , 18(5), 37–58. [Google Scholar]
  • Robergs, R.A., & Burnett, A.F. (2003). Methods used to process data from indirect calorimetry and their application to VO2max. Journal of Exercise Physiology online , 6(2), 44–57. [Google Scholar]
  • Robergs, R.A., Dwyer, D., & Astorino, T. (2010). Recommendations for improved data processing from expired gas analysis indirect calorimetry. Sports Medicine , 40(2), 1–17. [CrossRef] [Google Scholar]
  • Rossiter, H.B., Ward, S.A., Doyle, V.L., Howe, F.A., Griffiths, J.R., & Whipp, B.J. (1999). Inferences from pulmonary O2 uptake with respect to intramuscular [phosphocreatine] kinetics during moderate exercise in humans. Journal of Physiology , 518(3), 921–932. [CrossRef] [Google Scholar]
  • Spencer, M.D., Murias, J.M., Grey, T.M., & Paterson, D.H. (2012). Regulation of VO2 kinetics by O2 delivery: insights from acute hypoxia and heavy-intensity priming exercise in young men. Journal of Applied Physiology , 112(6), 1023–1032. [CrossRef] [PubMed] [Google Scholar]
  • Spencer, M.D., Murias, J.M., Lamb, H.P., Kowalchuk, J.M., & Paterson, D.H. (2011). Are the parameters of VO2, heart rate and muscle deoxygenation kinetics affect by serial moderate-intensity exercise transitions in a single day? European Journal of Applied Physiology , 111(4), 591–600. [CrossRef] [PubMed] [Google Scholar]
  • Stirling, J.R., Zakynthinaki, M.S., & Saltin, B. (2005). A model of oxygen uptake kinetics in response to exercise: including a means of calculating oxygen demand/deficit/debt. Bulletin of Mathematical Biology , 67(5), 989–1015. [CrossRef] [PubMed] [Google Scholar]
  • Whipp, B.J. (1971). Rate constant for the kinetics of oxygen uptake during light exercise. Journal of Applied Physiology , 30(2), 261–263. [CrossRef] [PubMed] [Google Scholar]
  • Whipp, B.J., Ward, S.A., Lamarra, N., Davis, J.A., & Wasserman, K. (1982). Parameters of ventilatory and gas exchange dynamics during exercise. Journal of Applied Physiology , 52(6), 1506–1513. [CrossRef] [PubMed] [Google Scholar]
  • Wisen, A., & Wohlfart, B. (2004). Determination of both the time constant of VO2 and ΔVO2/ΔW from a single incremental exercise test: validation and repeatability. Clinical Physiology and Functional Imaging , 24, 257–265. [CrossRef] [PubMed] [Google Scholar]
  • Yoon, B.K., Kravitz, L., & Robergs, R. (2007). VO2max, protocol duration, and the VO2 plateau. Medicine and Science in Sport and Exercise , 39(7), 1186–1192. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.