Free Access
Mov Sport Sci/Sci Mot
Number 89, 2015
Perception et action dans les interactions complexes avec l’environnement – Perception and action in the complex interactions with the environment
Page(s) 65 - 77
Published online 03 July 2015
  • Bachelard, G. (1971). La formation de l’esprit scientifique (p. 304). Paris : Vrin. [Google Scholar]
  • Bernstein, N.A. (1967). The control and regulation of movements. London: Pergamon Press. [Google Scholar]
  • Biryukova, E.V, & Bril, B. (2002). Bernstein et le geste technique. In V. Roux & B. Bril (Eds.), Le geste technique. Réflexions Méthodologiques et Anthropologiques (pp. 49–68). Erès. [Google Scholar]
  • Bouveyron, C., & Brunet, C. (2011). Simultaneous model-based clustering and visualization in the Fisher discriminative subspace. Statistics and Computing, 22 (1), 301−324. [Google Scholar]
  • Bravi, A., Longtin, A., & Seely, A.J.E. (2011). Review and classification of variability analysis techniques with clinical applications. Biomedical Engineering Online, 10 (1), 90. [Google Scholar]
  • Calinski, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics - Theory and Methods, 3 (1), 1–27. [Google Scholar]
  • Cavanaugh, J.T., Guskiewicz, K.M., Giuliani, C., Marshall, S., Mercer, V., & Stergiou, N. (2005). Detecting altered postural control after cerebral concussion in athletes with normal postural stability. British Journal of Sports Medicine, 39 (11), 805–811. [CrossRef] [PubMed] [Google Scholar]
  • Chen, H.-H., Liu, Y.T., Mayer-Kress, G., & Newell, K.M. (2005). Learning the pedalo locomotion task. Journal of Motor Behavior, 37 (3), 247–256. [CrossRef] [PubMed] [Google Scholar]
  • Chow, J.Y., Davids, K., Button, C., & Koh, M. (2007). Variation in coordination of a discrete multiarticular action as a function of skill level. Journal of Motor Behavior, 39 (6), 463–479. [CrossRef] [PubMed] [Google Scholar]
  • Chow, J.Y., Davids, K., Button, C., & Koh, M. (2008). Coordination changes in a discrete multi-articular action as a function of practice. Acta Psychologica, 127 (1), 163–176. [CrossRef] [PubMed] [Google Scholar]
  • Chow, J.Y., Davids, K., Button, C., & Rein, R. (2008). Dynamics of movement patterning in learning a discrete multiarticular action. Motor Control, 12 (3), 219–240. [PubMed] [Google Scholar]
  • Chow, J.Y., Davids, K., Button, C., Shuttleworth, R., Renshaw, I., & Araújo, D. (2007). The Role of Nonlinear Pedagogy in Physical Education. Review of Educational Research, 77 (3), 251–278. [CrossRef] [Google Scholar]
  • Cignetti, F., Decker, L.M., & Stergiou, N. (2012). Sensitivity of the Wolf’s and Rosenstein’s algorithms to evaluate local dynamic stability from small gait data sets. Annals of Biomedical Engineering, 40 (5), 1122–30. [CrossRef] [PubMed] [Google Scholar]
  • Cotuk, B., & Yavuz, E. (2007). Recurrence plot analysis of successive passing sequences in 2006 World Championship. Journal of Sports Science and Medicine, 6 (suppl. 10), 4. [Google Scholar]
  • Davids, K., Bennett, S.J., & Newell, K.M. (2006). Movement System Variability. Champaign, Il.: Human Kinetics. [Google Scholar]
  • Davids, K., Button, C., & Bennett, S.J. (2008). Dynamics of skill acquisition: A constraints-led approach. Champaign, IL: Human Kinetics. [Google Scholar]
  • Davids, K., Glazier, P.S., Araújo, D., & Bartlett, R.M. (2003). Movement systems as dynamical systems: the functional role of variability and its implications for sports medicine. Sports Medicine, 33 (4), 245–260. [CrossRef] [Google Scholar]
  • Davids, K., Hristovski, R., Araùjo, D., Balague Serre, N., Button, C., & Passos, P. (2014). Complex systems in sport. New York, NY: Routledge. [Google Scholar]
  • De Rosnay, J. (1975). Le macroscope (p. 337). Paris: Seuil. [Google Scholar]
  • Decker, L.M., Cignetti, F., & Stergiou, N. (2012). Wearing a safety harness during treadmill walking influences lower extremity kinematics mainly through changes in ankle regularity and local stability. Journal of Neuroengineering and Rehabilitation, 9, 8. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Dingwell, J.B., & Cusumano, J.P. (2000). Nonlinear time series analysis of normal and pathological human walking. Chaos (Woodbury, N.Y.), 10 (4), 848–863. [CrossRef] [PubMed] [Google Scholar]
  • Eckmann, J.P., Kamphorst, S.O., & Ruelle, D. (1987). Recurrence plots of dynamical systems. Europhysics Letters, 4, 973–7. [Google Scholar]
  • Edelman, G.M., & Gally, J.A. (2001). Degeneracy and complexity in biological systems. Proceedings of the National Academy of Sciences of the United States of America, 98 (24), 13763–8. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Ericsson, K.A., Krampe, R.T., & Tesch-Römer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100, 363–406. [CrossRef] [Google Scholar]
  • Fitts, P.M. (1964). Perceptual-motor skills learning. In A.M. Melton (Ed.), Categories of Human Learning. New York, NY: Academic Press. [Google Scholar]
  • Fonseca, S., Diniz, A., & Araújo, D. (2014). The Measurement of space and time in evolving sport phenomena. In K. Davids, R. Hristovski, D. Araújo, N. Balague Serre, C. Button, & P. Passos (Eds.), Complex systems in sport (p. 346). New York, NY: Routledge. [Google Scholar]
  • Gibson, J. (1979). The Ecological Approach to Visual Perception. Boston: Houghton Mifflin. [Google Scholar]
  • Guskiewicz, K.M., Perrin, D.H., & Gansneder, B.M. (1996). Effect of mild head injury on postural stability in athletes. Journal of Athletic Training, 31 (4), 300–6. [PubMed] [Google Scholar]
  • Haken, H., Kelso, J.A.S., & Bunz, H. (1985). A theoretical model of phase transitions in human hand movements. Biological Cybernetics, 51 (5), 347–356. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Hodges, N.J., Hayes, S.J., Horn, R.R., & Williams, A.M. (2005). Changes in coordination, control and outcome as a result of extended practice on a novel motor skill. Ergonomics, 48 (11-14), 1672–85. [CrossRef] [PubMed] [Google Scholar]
  • Kantz, H., & Schreiber, T. (2004). Nonlinear time series analysis. Cambridge, MA: Cambridge University Press. [Google Scholar]
  • Kelso, J.A.S. (1984). Phase transitions and critical behavior in human bimanual coordination. The American Journal of Physiology, 246 (6 Pt 2), R1000–4. [Google Scholar]
  • Kelso, J.A.S. (1995). Dynamic Patterns: the self-organization of brain and behavior. Cambridge, MA: MIT. [Google Scholar]
  • Kelso, J.A.S., DelColle, J., & Schöner, G. (1990). Action-perception as a pattern formation. In M. Jeannerod (Ed.), Attention and performance XIII (pp. 139–169). Hillsdale, NJ: Erlbaum. [Google Scholar]
  • Komar, J., Chow, J.Y., Chollet, D., & Seifert, L. (2014). Effect of analogy instructions with an internal focus on learning a complex motor skill. Journal of Applied Sport Psychology, 26, 17-32. [CrossRef] [Google Scholar]
  • Komar, J., Hérault, R., & Seifert, L. (2013). Key point selection and clustering of swimmer coordination through Sparse Fisher-EM. In European conference on machine learning and principles and practice of knowledge discovery in databases. Prague, Tchek Republic. [Google Scholar]
  • Komar, J., Sanders, R.H., Chollet, D., & Seifert, L. (2014). Do qualitative changes in arm-leg coordination lead to effectiveness of aquatic locomotion rather than efficiency. Journal of Applied Biomechanics, 30 (2), 189–97. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Kugler, P.N., Kelso, J.A.S., & Turvey, M.T. (1980). On the concept of coordinative structures as dissipative structures: I. Theoretical lines of convergence. Advances in Psychology, 1, 3–47. [Google Scholar]
  • Kuznetsov, N., Bonnette, S., & Riley, M.A. (2014). Nonlinear time series methods for analysing behavioural sequences. In K. Davids, R. Hristovski, D. Araújo, N. Balague Serre, C. Button, & P. Passos (Eds.), Complex Systems in Sport (p. 346). New York, NY: Routledge. [Google Scholar]
  • Latash, M.L., Scholz, J.P., & Schöner, G. (2002). Motor control strategies revealed in the structure of motor variability. Exercise and Sport Science Reviews, 30 (1), 26–31. [CrossRef] [Google Scholar]
  • Lee, M.C.Y., Chow, J.Y., Komar, J., Tan, C.W.K., & Button, C. (2014). Nonlinear pedagogy: an effective approach to cater for individual differences in learning a sports skill. PloS One, 9 (8), e104744. [Google Scholar]
  • Marwan, N., Carmenromano, M., Thiel, M., & Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics Reports, 438 (5-6), 237–329. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  • Mason, P.H. (2010). Degeneracy at Multiple Levels of Complexity. Biological Theory, 5 (3), 277–288. [CrossRef] [Google Scholar]
  • Muller, H., & Sternad, D. (2014). Decomposition of variability in the execution of goal-directed tasks: Three components of skill improvement. Journal of Experimental Psychology: Human Perception and Performance, 30 (1), 212–233. [CrossRef] [Google Scholar]
  • Negahban, H., Hadian, M.R., Salavati, M., Mazaheri, M., Talebian, S., Jafari, A.H., & Parnianpour, M. (2009). The effects of dual-tasking on postural control in people with unilateral anterior cruciate ligament injury. Gait & Posture, 30 (4), 477–481. [CrossRef] [PubMed] [Google Scholar]
  • Newell, K.M. (1991). Motor skill acquisition. Annual Review of Psychology, 42, 213–37. [CrossRef] [PubMed] [Google Scholar]
  • Newell, K.M., & Corcos, D.M. (1993). Variability and motor control. Champain, IL: Human kinetics. [Google Scholar]
  • Newell, K.M., McDonald, P.V, & Kugler, P.N. (1991). The perceptual-motor workspace and the acquisition of skill. In J. Requin & G.E. Stelmach (Eds.), Tutorials in motor neuroscience (pp. 95–108). Netherlands: Kluwer Academic. [Google Scholar]
  • Newell, K.M., & Slifkin, A.B. (1998). The nature of movement variability. In J.P. Piek (Ed.), Motor Behavior and Human Skill: A multidisciplinary approach. New York, NY: Human Kinetics. [Google Scholar]
  • Nourrit, D., Delignières, D., Caillou, N., Deschamps, T., & Lauriot, B. (2003). On discontinuities in motor learning: a longitudinal study of complex skill acquisition on a ski-simulator. Journal of Motor Behavior, 35 (2), 151–170. [CrossRef] [PubMed] [Google Scholar]
  • Peterka, R.J., & Black, F.O. (1990). Age-related changes in human posture control: sensory organization tests. Journal of Vestibular Research: Equilibrium & Orientation, 1 (1), 73–85. [MathSciNet] [Google Scholar]
  • Pfusterschmied, J., Buchecker, M., Keller, M., Wagner, H., Taube, W., & Müller, E. (2013). Supervised slackline training improves postural stability. European Journal of Sport Science, 13 (1), 49–57. [CrossRef] [Google Scholar]
  • Pincus, S.M. (1991). Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences of the United States of America, 88 (6), 2297−301. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Pincus, S.M. (2006). Approximate entropy as a measure of irregularity for psychiatric serial metrics. Bipolar Disorders, 8 (5 Pt 1), 430–40. [CrossRef] [PubMed] [Google Scholar]
  • Prigogine, I. (1994). Les lois du chaos (p. 126). Paris: Flammarion. [Google Scholar]
  • Rein, R. (2012). Measurement methods to analyse changes in coordination during motor learning from a non-linear perspective. The Open Sports Sciences Journal, 5 (1), 36−48. [CrossRef] [Google Scholar]
  • Rein, R., Button, C., Davids, K., & Summers, J. (2010). Cluster analysis of movement patterns in multiarticular actions: a tutorial. Motor Control, 14 (2), 211–39. [PubMed] [Google Scholar]
  • Riccio, G.E. (1993). Information in movement variability about the qualitative dynamics of posture and orientation. In K.M. Newell & D.M. Corcos (Eds.), Variability and motor control (pp. 317–357). Champaign, IL: Kinetics, Human. [Google Scholar]
  • Riley, M.A., Balasubramaniam, R., & Turvey, M.T. (1999). Recurrence quantification analysis of postural fluctuations. Gait & Posture, 9 (1), 65–78. [CrossRef] [PubMed] [Google Scholar]
  • Riley, M.A., & Clark, S. (2003). Recurrence analysis of human postural sway during the sensory organization test. Neuroscience Letters, 342 (1-2), 45–8. [CrossRef] [PubMed] [Google Scholar]
  • Riley, M.A., & Turvey, M.T. (2002). Variability and determinism in motor behavior. Journal of Motor Behavior, 34 (2), 99–125. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Schmidt, R.A. (1975). A schema theory of discrete motor skill learning. Psychological Review, 82, 225–260. [CrossRef] [Google Scholar]
  • Schmidt, R.A. (2003). Motor schema theory after 27 years: reflections and implications for a new theory. Research Quarterly for Exercise and Sport, 74 (4), 366–75. [Google Scholar]
  • Schneider, E.D., & Sagan, D. (2005). Into the cool: energy flow, thermodynamics, and life (p. 378). Chicago: University of Chicago Press. [Google Scholar]
  • Scholz, J.P., & Schöner, G. (1999). The uncontrolled manifold concept: identifying control variables for a functional task. Experimental Brain Research, 126 (3), 289–306. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Schöner, G., & Kelso, J.A.S. (1988). Dynamic pattern generation in behavioral and neurl system. Science, 239, 1513–20. [CrossRef] [PubMed] [Google Scholar]
  • Schorer, J., Baker, J., Fath, F., & Jaitner, T. (2007). Identification of interindividual and intraindividual movement patterns in handball players of varying expertise levels. Journal of Motor Behavior, 39 (5), 409–421. [CrossRef] [PubMed] [Google Scholar]
  • Seifert, L., Button, C., & Davids, K. (2013). Key properties of expert movement systems in sport: an ecological dynamics perspective. Sports Medicine, 43 (3), 167–178. [CrossRef] [Google Scholar]
  • Seifert, L., Leblanc, H., Herault, R., Komar, J., Button, C., & Chollet, D. (2011). Inter-individual variability in the upper – lower limb breaststroke coordination. Human Movement Science, 30 (3), 550–565. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Shannon, C.E., & Weaver, W. (1949). The Mathematical theory of communication. (Vol. 47, p. 144). Chicago: University of Illinois Press. [Google Scholar]
  • Shaw, R. (2003). The Agent – Environment Interface: Simon’s Indirect or Gibson’s Direct Coupling? Ecological Psychology, 15 (1), 37–106. [CrossRef] [Google Scholar]
  • Shea, C.H., & Wulf, G. (2005). Schema theory: a critical appraisal and reevaluation. Journal of Motor Behavior, 37 (2), 85–101. [CrossRef] [PubMed] [Google Scholar]
  • Sidaway, B., Heise, G., & Schoenfelder-Zohdi, B. (1995). Quantifying the variability of angle-angle plots. Journal of Human Movement Studies, 29, 181–197. [Google Scholar]
  • Slifkin, A.B., & Newell, K.M. (1998). Is variability in human performance a reflection of system noise? Current Directions in Psychological Science, 7 (6) 170–177. [CrossRef] [Google Scholar]
  • Slifkin, A.B., & Newell, K.M. (1999). Noise, information transmission, and force variability. Journal of Experimental Psychology. Human Perception and Performance, 25 (3), 837–51. [CrossRef] [PubMed] [Google Scholar]
  • Stergiou, N., & Decker, L.M. (2011). Human movement variability, nonlinear dynamics, and pathology: is there a connection? Human Movement Science, 30 (5), 869–888. [CrossRef] [PubMed] [Google Scholar]
  • Tulppo, M.P., Mäkikallio, T.H., Seppänen, T., Shoemaker, K., Tutungi, E., Hughson, R.L., & Huikuri, H.V. (2001). Effects of pharmacological adrenergic and vagal modulation on fractal heart rate dynamics. Clinical Physiology, 21 (5), 515–523. [CrossRef] [Google Scholar]
  • Varela, F. (1989). Autonomie et connaissance. Essai sur le vivant [Autonomy and knowledge: Essay about living system]. Paris : Seuil. [Google Scholar]
  • Vereijken, B., van Emmerik, R.E.A., Whiting, H., & Newell, K.M. (1992). Free(z)ing degrees of freedom in skill acquisition. Journal of Motor Behavior, 24 (1), 133–142. [CrossRef] [Google Scholar]
  • Von Bertalanffy, L. (1969). General system theory (p. 283). New York, NY: George Braziller. [Google Scholar]
  • Webber, C.L., & Zbilut, J.P. (1994). Dynamical assessment of physiological systems and states using recurrence plot strategies. Journal of Applied Physiology, 76 (2), 965–73. [PubMed] [Google Scholar]
  • Wolpert, D.M. (1997). Computational approaches to motor control. Trends in Cognitive Sciences, 1 (6), 209–216. [CrossRef] [PubMed] [Google Scholar]
  • Wu, Y.-H., & Latash, M.L. (2014). The effects of practice on coordination. Exercise and Sport Sciences Reviews, 42 (1), 37–42. [CrossRef] [PubMed] [Google Scholar]
  • Zbilut, J.P., & Webber, C.L. (1992). Embeddings and delays as derived from quantification of recurrence plots. Physics Letters A, 171 (3-4), 199–203. [CrossRef] [Google Scholar]
  • Zwirn, H.P. (2006). Les systèmes complexes (p. 224). Paris : Odile jacob. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.