Accès gratuit
Mov Sport Sci/Sci Mot
Numéro 89, 2015
Perception et action dans les interactions complexes avec l’environnement – Perception and action in the complex interactions with the environment
Page(s) 65 - 77
Publié en ligne 3 juillet 2015
  • Bachelard, G. (1971). La formation de l’esprit scientifique (p. 304). Paris : Vrin. [Google Scholar]
  • Bernstein, N.A. (1967). The control and regulation of movements. London: Pergamon Press. [Google Scholar]
  • Biryukova, E.V, & Bril, B. (2002). Bernstein et le geste technique. In V. Roux & B. Bril (Eds.), Le geste technique. Réflexions Méthodologiques et Anthropologiques (pp. 49–68). Erès. [Google Scholar]
  • Bouveyron, C., & Brunet, C. (2011). Simultaneous model-based clustering and visualization in the Fisher discriminative subspace. Statistics and Computing, 22 (1), 301−324. [Google Scholar]
  • Bravi, A., Longtin, A., & Seely, A.J.E. (2011). Review and classification of variability analysis techniques with clinical applications. Biomedical Engineering Online, 10 (1), 90. [Google Scholar]
  • Calinski, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics - Theory and Methods, 3 (1), 1–27. [Google Scholar]
  • Cavanaugh, J.T., Guskiewicz, K.M., Giuliani, C., Marshall, S., Mercer, V., & Stergiou, N. (2005). Detecting altered postural control after cerebral concussion in athletes with normal postural stability. British Journal of Sports Medicine, 39 (11), 805–811. [CrossRef] [PubMed] [Google Scholar]
  • Chen, H.-H., Liu, Y.T., Mayer-Kress, G., & Newell, K.M. (2005). Learning the pedalo locomotion task. Journal of Motor Behavior, 37 (3), 247–256. [CrossRef] [PubMed] [Google Scholar]
  • Chow, J.Y., Davids, K., Button, C., & Koh, M. (2007). Variation in coordination of a discrete multiarticular action as a function of skill level. Journal of Motor Behavior, 39 (6), 463–479. [CrossRef] [PubMed] [Google Scholar]
  • Chow, J.Y., Davids, K., Button, C., & Koh, M. (2008). Coordination changes in a discrete multi-articular action as a function of practice. Acta Psychologica, 127 (1), 163–176. [CrossRef] [PubMed] [Google Scholar]
  • Chow, J.Y., Davids, K., Button, C., & Rein, R. (2008). Dynamics of movement patterning in learning a discrete multiarticular action. Motor Control, 12 (3), 219–240. [PubMed] [Google Scholar]
  • Chow, J.Y., Davids, K., Button, C., Shuttleworth, R., Renshaw, I., & Araújo, D. (2007). The Role of Nonlinear Pedagogy in Physical Education. Review of Educational Research, 77 (3), 251–278. [CrossRef] [Google Scholar]
  • Cignetti, F., Decker, L.M., & Stergiou, N. (2012). Sensitivity of the Wolf’s and Rosenstein’s algorithms to evaluate local dynamic stability from small gait data sets. Annals of Biomedical Engineering, 40 (5), 1122–30. [CrossRef] [PubMed] [Google Scholar]
  • Cotuk, B., & Yavuz, E. (2007). Recurrence plot analysis of successive passing sequences in 2006 World Championship. Journal of Sports Science and Medicine, 6 (suppl. 10), 4. [Google Scholar]
  • Davids, K., Bennett, S.J., & Newell, K.M. (2006). Movement System Variability. Champaign, Il.: Human Kinetics. [Google Scholar]
  • Davids, K., Button, C., & Bennett, S.J. (2008). Dynamics of skill acquisition: A constraints-led approach. Champaign, IL: Human Kinetics. [Google Scholar]
  • Davids, K., Glazier, P.S., Araújo, D., & Bartlett, R.M. (2003). Movement systems as dynamical systems: the functional role of variability and its implications for sports medicine. Sports Medicine, 33 (4), 245–260. [CrossRef] [Google Scholar]
  • Davids, K., Hristovski, R., Araùjo, D., Balague Serre, N., Button, C., & Passos, P. (2014). Complex systems in sport. New York, NY: Routledge. [Google Scholar]
  • De Rosnay, J. (1975). Le macroscope (p. 337). Paris: Seuil. [Google Scholar]
  • Decker, L.M., Cignetti, F., & Stergiou, N. (2012). Wearing a safety harness during treadmill walking influences lower extremity kinematics mainly through changes in ankle regularity and local stability. Journal of Neuroengineering and Rehabilitation, 9, 8. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Dingwell, J.B., & Cusumano, J.P. (2000). Nonlinear time series analysis of normal and pathological human walking. Chaos (Woodbury, N.Y.), 10 (4), 848–863. [CrossRef] [PubMed] [Google Scholar]
  • Eckmann, J.P., Kamphorst, S.O., & Ruelle, D. (1987). Recurrence plots of dynamical systems. Europhysics Letters, 4, 973–7. [Google Scholar]
  • Edelman, G.M., & Gally, J.A. (2001). Degeneracy and complexity in biological systems. Proceedings of the National Academy of Sciences of the United States of America, 98 (24), 13763–8. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Ericsson, K.A., Krampe, R.T., & Tesch-Römer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100, 363–406. [CrossRef] [Google Scholar]
  • Fitts, P.M. (1964). Perceptual-motor skills learning. In A.M. Melton (Ed.), Categories of Human Learning. New York, NY: Academic Press. [Google Scholar]
  • Fonseca, S., Diniz, A., & Araújo, D. (2014). The Measurement of space and time in evolving sport phenomena. In K. Davids, R. Hristovski, D. Araújo, N. Balague Serre, C. Button, & P. Passos (Eds.), Complex systems in sport (p. 346). New York, NY: Routledge. [Google Scholar]
  • Gibson, J. (1979). The Ecological Approach to Visual Perception. Boston: Houghton Mifflin. [Google Scholar]
  • Guskiewicz, K.M., Perrin, D.H., & Gansneder, B.M. (1996). Effect of mild head injury on postural stability in athletes. Journal of Athletic Training, 31 (4), 300–6. [PubMed] [Google Scholar]
  • Haken, H., Kelso, J.A.S., & Bunz, H. (1985). A theoretical model of phase transitions in human hand movements. Biological Cybernetics, 51 (5), 347–356. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Hodges, N.J., Hayes, S.J., Horn, R.R., & Williams, A.M. (2005). Changes in coordination, control and outcome as a result of extended practice on a novel motor skill. Ergonomics, 48 (11-14), 1672–85. [CrossRef] [PubMed] [Google Scholar]
  • Kantz, H., & Schreiber, T. (2004). Nonlinear time series analysis. Cambridge, MA: Cambridge University Press. [Google Scholar]
  • Kelso, J.A.S. (1984). Phase transitions and critical behavior in human bimanual coordination. The American Journal of Physiology, 246 (6 Pt 2), R1000–4. [Google Scholar]
  • Kelso, J.A.S. (1995). Dynamic Patterns: the self-organization of brain and behavior. Cambridge, MA: MIT. [Google Scholar]
  • Kelso, J.A.S., DelColle, J., & Schöner, G. (1990). Action-perception as a pattern formation. In M. Jeannerod (Ed.), Attention and performance XIII (pp. 139–169). Hillsdale, NJ: Erlbaum. [Google Scholar]
  • Komar, J., Chow, J.Y., Chollet, D., & Seifert, L. (2014). Effect of analogy instructions with an internal focus on learning a complex motor skill. Journal of Applied Sport Psychology, 26, 17-32. [CrossRef] [Google Scholar]
  • Komar, J., Hérault, R., & Seifert, L. (2013). Key point selection and clustering of swimmer coordination through Sparse Fisher-EM. In European conference on machine learning and principles and practice of knowledge discovery in databases. Prague, Tchek Republic. [Google Scholar]
  • Komar, J., Sanders, R.H., Chollet, D., & Seifert, L. (2014). Do qualitative changes in arm-leg coordination lead to effectiveness of aquatic locomotion rather than efficiency. Journal of Applied Biomechanics, 30 (2), 189–97. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Kugler, P.N., Kelso, J.A.S., & Turvey, M.T. (1980). On the concept of coordinative structures as dissipative structures: I. Theoretical lines of convergence. Advances in Psychology, 1, 3–47. [Google Scholar]
  • Kuznetsov, N., Bonnette, S., & Riley, M.A. (2014). Nonlinear time series methods for analysing behavioural sequences. In K. Davids, R. Hristovski, D. Araújo, N. Balague Serre, C. Button, & P. Passos (Eds.), Complex Systems in Sport (p. 346). New York, NY: Routledge. [Google Scholar]
  • Latash, M.L., Scholz, J.P., & Schöner, G. (2002). Motor control strategies revealed in the structure of motor variability. Exercise and Sport Science Reviews, 30 (1), 26–31. [CrossRef] [Google Scholar]
  • Lee, M.C.Y., Chow, J.Y., Komar, J., Tan, C.W.K., & Button, C. (2014). Nonlinear pedagogy: an effective approach to cater for individual differences in learning a sports skill. PloS One, 9 (8), e104744. [Google Scholar]
  • Marwan, N., Carmenromano, M., Thiel, M., & Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics Reports, 438 (5-6), 237–329. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  • Mason, P.H. (2010). Degeneracy at Multiple Levels of Complexity. Biological Theory, 5 (3), 277–288. [CrossRef] [Google Scholar]
  • Muller, H., & Sternad, D. (2014). Decomposition of variability in the execution of goal-directed tasks: Three components of skill improvement. Journal of Experimental Psychology: Human Perception and Performance, 30 (1), 212–233. [CrossRef] [Google Scholar]
  • Negahban, H., Hadian, M.R., Salavati, M., Mazaheri, M., Talebian, S., Jafari, A.H., & Parnianpour, M. (2009). The effects of dual-tasking on postural control in people with unilateral anterior cruciate ligament injury. Gait & Posture, 30 (4), 477–481. [CrossRef] [PubMed] [Google Scholar]
  • Newell, K.M. (1991). Motor skill acquisition. Annual Review of Psychology, 42, 213–37. [CrossRef] [PubMed] [Google Scholar]
  • Newell, K.M., & Corcos, D.M. (1993). Variability and motor control. Champain, IL: Human kinetics. [Google Scholar]
  • Newell, K.M., McDonald, P.V, & Kugler, P.N. (1991). The perceptual-motor workspace and the acquisition of skill. In J. Requin & G.E. Stelmach (Eds.), Tutorials in motor neuroscience (pp. 95–108). Netherlands: Kluwer Academic. [Google Scholar]
  • Newell, K.M., & Slifkin, A.B. (1998). The nature of movement variability. In J.P. Piek (Ed.), Motor Behavior and Human Skill: A multidisciplinary approach. New York, NY: Human Kinetics. [Google Scholar]
  • Nourrit, D., Delignières, D., Caillou, N., Deschamps, T., & Lauriot, B. (2003). On discontinuities in motor learning: a longitudinal study of complex skill acquisition on a ski-simulator. Journal of Motor Behavior, 35 (2), 151–170. [CrossRef] [PubMed] [Google Scholar]
  • Peterka, R.J., & Black, F.O. (1990). Age-related changes in human posture control: sensory organization tests. Journal of Vestibular Research: Equilibrium & Orientation, 1 (1), 73–85. [MathSciNet] [Google Scholar]
  • Pfusterschmied, J., Buchecker, M., Keller, M., Wagner, H., Taube, W., & Müller, E. (2013). Supervised slackline training improves postural stability. European Journal of Sport Science, 13 (1), 49–57. [CrossRef] [Google Scholar]
  • Pincus, S.M. (1991). Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences of the United States of America, 88 (6), 2297−301. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Pincus, S.M. (2006). Approximate entropy as a measure of irregularity for psychiatric serial metrics. Bipolar Disorders, 8 (5 Pt 1), 430–40. [CrossRef] [PubMed] [Google Scholar]
  • Prigogine, I. (1994). Les lois du chaos (p. 126). Paris: Flammarion. [Google Scholar]
  • Rein, R. (2012). Measurement methods to analyse changes in coordination during motor learning from a non-linear perspective. The Open Sports Sciences Journal, 5 (1), 36−48. [CrossRef] [Google Scholar]
  • Rein, R., Button, C., Davids, K., & Summers, J. (2010). Cluster analysis of movement patterns in multiarticular actions: a tutorial. Motor Control, 14 (2), 211–39. [PubMed] [Google Scholar]
  • Riccio, G.E. (1993). Information in movement variability about the qualitative dynamics of posture and orientation. In K.M. Newell & D.M. Corcos (Eds.), Variability and motor control (pp. 317–357). Champaign, IL: Kinetics, Human. [Google Scholar]
  • Riley, M.A., Balasubramaniam, R., & Turvey, M.T. (1999). Recurrence quantification analysis of postural fluctuations. Gait & Posture, 9 (1), 65–78. [CrossRef] [PubMed] [Google Scholar]
  • Riley, M.A., & Clark, S. (2003). Recurrence analysis of human postural sway during the sensory organization test. Neuroscience Letters, 342 (1-2), 45–8. [CrossRef] [PubMed] [Google Scholar]
  • Riley, M.A., & Turvey, M.T. (2002). Variability and determinism in motor behavior. Journal of Motor Behavior, 34 (2), 99–125. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Schmidt, R.A. (1975). A schema theory of discrete motor skill learning. Psychological Review, 82, 225–260. [CrossRef] [Google Scholar]
  • Schmidt, R.A. (2003). Motor schema theory after 27 years: reflections and implications for a new theory. Research Quarterly for Exercise and Sport, 74 (4), 366–75. [Google Scholar]
  • Schneider, E.D., & Sagan, D. (2005). Into the cool: energy flow, thermodynamics, and life (p. 378). Chicago: University of Chicago Press. [Google Scholar]
  • Scholz, J.P., & Schöner, G. (1999). The uncontrolled manifold concept: identifying control variables for a functional task. Experimental Brain Research, 126 (3), 289–306. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Schöner, G., & Kelso, J.A.S. (1988). Dynamic pattern generation in behavioral and neurl system. Science, 239, 1513–20. [CrossRef] [PubMed] [Google Scholar]
  • Schorer, J., Baker, J., Fath, F., & Jaitner, T. (2007). Identification of interindividual and intraindividual movement patterns in handball players of varying expertise levels. Journal of Motor Behavior, 39 (5), 409–421. [CrossRef] [PubMed] [Google Scholar]
  • Seifert, L., Button, C., & Davids, K. (2013). Key properties of expert movement systems in sport: an ecological dynamics perspective. Sports Medicine, 43 (3), 167–178. [CrossRef] [Google Scholar]
  • Seifert, L., Leblanc, H., Herault, R., Komar, J., Button, C., & Chollet, D. (2011). Inter-individual variability in the upper – lower limb breaststroke coordination. Human Movement Science, 30 (3), 550–565. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Shannon, C.E., & Weaver, W. (1949). The Mathematical theory of communication. (Vol. 47, p. 144). Chicago: University of Illinois Press. [Google Scholar]
  • Shaw, R. (2003). The Agent – Environment Interface: Simon’s Indirect or Gibson’s Direct Coupling? Ecological Psychology, 15 (1), 37–106. [CrossRef] [Google Scholar]
  • Shea, C.H., & Wulf, G. (2005). Schema theory: a critical appraisal and reevaluation. Journal of Motor Behavior, 37 (2), 85–101. [CrossRef] [PubMed] [Google Scholar]
  • Sidaway, B., Heise, G., & Schoenfelder-Zohdi, B. (1995). Quantifying the variability of angle-angle plots. Journal of Human Movement Studies, 29, 181–197. [Google Scholar]
  • Slifkin, A.B., & Newell, K.M. (1998). Is variability in human performance a reflection of system noise? Current Directions in Psychological Science, 7 (6) 170–177. [CrossRef] [Google Scholar]
  • Slifkin, A.B., & Newell, K.M. (1999). Noise, information transmission, and force variability. Journal of Experimental Psychology. Human Perception and Performance, 25 (3), 837–51. [CrossRef] [PubMed] [Google Scholar]
  • Stergiou, N., & Decker, L.M. (2011). Human movement variability, nonlinear dynamics, and pathology: is there a connection? Human Movement Science, 30 (5), 869–888. [CrossRef] [PubMed] [Google Scholar]
  • Tulppo, M.P., Mäkikallio, T.H., Seppänen, T., Shoemaker, K., Tutungi, E., Hughson, R.L., & Huikuri, H.V. (2001). Effects of pharmacological adrenergic and vagal modulation on fractal heart rate dynamics. Clinical Physiology, 21 (5), 515–523. [CrossRef] [Google Scholar]
  • Varela, F. (1989). Autonomie et connaissance. Essai sur le vivant [Autonomy and knowledge: Essay about living system]. Paris : Seuil. [Google Scholar]
  • Vereijken, B., van Emmerik, R.E.A., Whiting, H., & Newell, K.M. (1992). Free(z)ing degrees of freedom in skill acquisition. Journal of Motor Behavior, 24 (1), 133–142. [CrossRef] [Google Scholar]
  • Von Bertalanffy, L. (1969). General system theory (p. 283). New York, NY: George Braziller. [Google Scholar]
  • Webber, C.L., & Zbilut, J.P. (1994). Dynamical assessment of physiological systems and states using recurrence plot strategies. Journal of Applied Physiology, 76 (2), 965–73. [PubMed] [Google Scholar]
  • Wolpert, D.M. (1997). Computational approaches to motor control. Trends in Cognitive Sciences, 1 (6), 209–216. [CrossRef] [PubMed] [Google Scholar]
  • Wu, Y.-H., & Latash, M.L. (2014). The effects of practice on coordination. Exercise and Sport Sciences Reviews, 42 (1), 37–42. [CrossRef] [PubMed] [Google Scholar]
  • Zbilut, J.P., & Webber, C.L. (1992). Embeddings and delays as derived from quantification of recurrence plots. Physics Letters A, 171 (3-4), 199–203. [CrossRef] [Google Scholar]
  • Zwirn, H.P. (2006). Les systèmes complexes (p. 224). Paris : Odile jacob. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.