Free Access
Issue |
Mov Sport Sci/Sci Mot
Number 113, 2021
|
|
---|---|---|
Page(s) | 27 - 37 | |
DOI | https://doi.org/10.1051/sm/2021013 | |
Published online | 27 July 2021 |
- Agar-Newman, D.J., Goodale, T.L., & Klimstra, M.D. (2017). Anthropometric and physical qualities of international level female rugby sevens athletes based on playing position. Journal of Strength and Conditioning Research, 31(5), 1346–1352. DOI: 10.1519/jsc.0000000000001167. [PubMed] [Google Scholar]
- Attwood, M.J., Roberts, S.P., Trewartha, G., England, M., & Stokes, K.A. (2019). Association of the Functional Movement Screen with match-injury burden in men’s community rugby union. Journal of Sports Sciences, 37(12), 1365–1374. DOI: 10.1080/02640414.2018.1559525. [PubMed] [Google Scholar]
- Baker, D. (2001). Comparison of upper-body strength and power between professional and college-aged rugby league players. Journal of Strength and Conditioning Research, 15(1), 30–35. [PubMed] [Google Scholar]
- Brazier, J., Antrobus, M., Stebbings, G.K., Day, S.H., Callus, P., Erskine, R.M., Bennett, M.A., Kilduff, L.P., & Williams, A.G. (2018). Anthropometric and physiological characteristics of elite male rugby athletes. Journal of Strength and Conditioning Research, 34(6), 1790–1801. DOI: 10.1519/jsc.0000000000002827. [Google Scholar]
- Buckthorpe, M., Morris, J., & Folland, J.P. (2012). Validity of vertical jump measurement devices. Journal of Sports Sciences, 30(1), 63–69. DOI: 10.1080/02640414.2011.624539. [PubMed] [Google Scholar]
- Cahill, N., Lamb, K., Worsfold, P., Headey, R., & Murray, S. (2013). The movement characteristics of English Premiership rugby union players. Journal of Sports Sciences, 31(3), 229–237. [PubMed] [Google Scholar]
- Chavda, S., Bromley, T., Jarvis, P., Williams, S., Bishop, C., Turner, A.N., Lake, J.P., & Mundy, P.D. (2018). Force-time characteristics of the countermovement jump: Analyzing the curve in Excel. Strength and Conditioning Journal, 40(2), 67–77. [Google Scholar]
- Clarke, A.C., Anson, J.M., & Pyne, D.B. (2015). Neuromuscular fatigue and muscle damage after a women’s rugby sevens tournament. International Journal of Sports Physiology and Performance, 10(6), 808–814. DOI: 10.1123/ijspp.2014-0590. [PubMed] [Google Scholar]
- Clarke, A.C., Anson, J.M., & Pyne, D.B. (2017). Game movement demands and physical profiles of junior, senior and elite male and female rugby sevens players. Journal of Sports Sciences, 35(8), 727–733. DOI: 10.1080/02640414.2016.1186281. [PubMed] [Google Scholar]
- Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Routledge. [Google Scholar]
- Cross, M.R., Brughelli, M., Brown, S.R., Samozino, P., Gill, N.D., Cronin, J.B., & Morin, J. (2014). Mechanical properties of sprinting in elite rugby union and rugby league. International Journal of Sports Physiology and Performance, 10(6). [PubMed] [Google Scholar]
- Cross, M.J., Williams, S., Trewartha, G., Kemp, S.P., & Stokes, K.A. (2016). The influence of in-season training loads on injury risk in professional rugby union. International Journal of Sports Physiology and Performance, 11(3), 350–355. DOI: 10.1123/ijspp.2015-0187. [PubMed] [Google Scholar]
- Cunningham, D.J., Shearer, D.A., Carter, N., Drawer, S., Pollard, B., Bennett, M., Eager, R., Cook, C.J., Farrell, J., Russell, M., & Kilduff, L.P. (2018). Assessing worst case scenarios in movement demands derived from global positioning systems during international rugby union matches: Rolling averages versus fixed length epochs. PLoS One, 13(4), e0195197. DOI: 10.1371/journal.pone.0195197. [PubMed] [Google Scholar]
- de la Motte, S.J., Gribbin, T.C., Lisman, P., Murphy, K., & Deuster, P.A. (2017). Systematic review of the association between physical fitness and musculoskeletal injury risk: Part 2-Muscular endurance and muscular strength. Journal of Strength and Conditioning Research, 31(11), 3218–3234. DOI: 10.1519/jsc.0000000000002174. [PubMed] [Google Scholar]
- de la Motte, S.J., Lisman, P., Gribbin, T.C., Murphy, K., & Deuster, P.A. (2019). Systematic review of the association between physical fitness and musculoskeletal injury risk: Part 3-Flexibility, power, speed, balance, and agility. Journal of Strength and Conditioning Research, 33(6), 1723–1735. DOI: 10.1519/jsc.0000000000002382. [PubMed] [Google Scholar]
- Deutsch, M., Kearney, G., & Rehrer, N. (2007). Time–motion analysis of professional rugby union players during match-play. Journal of Sports Sciences, 25(4), 461–472. [PubMed] [Google Scholar]
- Dobbin, N., Hunwicks, R., Highton, J., & Twist, C. (2017). Validity of a jump mat for assessing countermovement jump performance in elite rugby players. International Journal od Sports Medicine, 38(2), 99–104. DOI: 10.1055/s-0042-118313. [Google Scholar]
- Duke, S.R., Martin, S.E., & Gaul, C.A. (2017). Preseason functional movement screen predicts risk of time-loss injury in experienced male rugby union athletes. Journal of Strength and Conditioning Research, 31(10), 2740–2747. DOI: 10.1519/jsc.0000000000001838. [PubMed] [Google Scholar]
- England Rugby. (2019). England Women announce contracts and squad. Retrieved from https://www.englandrugby.com/news/england-women-contracts-red-roses-and-squad/. [Google Scholar]
- Gabbett, T.J., Ullah, S., & Finch, C.F. (2012). Identifying risk factors for contact injury in professional rugby league players-application of a frailty model for recurrent injury. Journal of Science and Medicine in Sport, 15(6), 496–504. DOI: 10.1016/j.jsams.2012.03.017. [PubMed] [Google Scholar]
- Goodale, T.L., Gabbett, T.J., Stellingwerff, T., Tsai, M.C., & Sheppard, J.M. (2016). Relationship between physical qualities and minutes played in international women’s rugby sevens. International Journal of Sports Physiology and Performance, 11(4), 489–494. DOI: 10.1123/ijspp.2014-0509. [PubMed] [Google Scholar]
- Heffernan, S.M., Stebbings, G.K., Kilduff, L.P., Erskine, R.M., Day, S.H., Morse, C.I., McPhee, J.S., Cook, C.J., Vance, B., Ribbans, W.J., Raleigh, S.M., & Williams, A.G. (2017). Fat mass and obesity associated (FTO) gene influences skeletal muscle phenotypes in non-resistance trained males and elite rugby playing position. BMC Genetics, 18(1), 1–9. DOI: 10.1186/s12863-017-0470-1. [PubMed] [Google Scholar]
- Hene, N.M., & Bassett, S.H. (2013). Changes in the physical fitness of elite women’s rugby union players over a competition season. South African Journal of Sports Medicine, 25(2), 47–50. [Google Scholar]
- Hene, N., Bassett, S., & Andrews, B. (2011). Physical fitness profiles of elite women’s rugby union players: physical fitness and training programme. African Journal for Physical Health Education, Recreation and Dance, 17(Supp 1), 1–8. [Google Scholar]
- Hopkins, W. (2002). A new view of statistics: Effect magnitudes. Retrieved February, 14, 2005. [Google Scholar]
- Hopkins, W.G., Marshall, S.W., Batterham, A.M., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine and Science in Sports and Exercise, 41(1), 3–13. DOI: 10.1249/MSS.0b013e31818cb278. [CrossRef] [PubMed] [Google Scholar]
- IOC. (2017). Rugby History of Rugby at the Olympic Games. Retrieved from www.worldrugby.org/studies. [Google Scholar]
- King, D., Hume, P., Cummins, C., Pearce, A., Clark, T., Foskett, A., & Barnes, M. (2019). Match and training injuries in Women’s Rugby Union: A systematic review of published studies. Sports Medicine. DOI: 10.1007/s40279-019-01151-4. [Google Scholar]
- Lockie, R.G., Orjalo, A.J., Amran, V.L., Davis, D.L., Risso, F.G., & Jalilvand, F. (2016). An introductory analysis as to the influence of lower-body power on multidirectional speed in collegiate female rugby players. Sport Science Review, 25(1-2), 113–134. [Google Scholar]
- Malone, S., Earls, M., Shovlin, A., Eddy, A., & Winkelman, N. (2018). Match-play running performance and exercise intensity in elite international women’s rugby sevens. Journal of Strength and Conditioning Research, Ahead of print. DOI: 10.1519/jsc.0000000000002547. [Google Scholar]
- McMahon, J.J., Jones, P.A., & Comfort, P. (2016). A correction equation for jump height measured using the just jump system. International Journal of Sports Physiology and Performance, 11(4), 555–557. DOI: 10.1123/ijspp.2015-0194. [PubMed] [Google Scholar]
- Menzel, H.J., Chagas, M.H., Szmuchrowski, L.A., Araujo, S.R., Campos, C.E., & Giannetti, M.R. (2010). Usefulness of the jump-and-reach test in assessment of vertical jump performance. Perceptual and Motor Skills, 110(1), 150–158. DOI: 10.2466/pms.110.1.150-158. [PubMed] [Google Scholar]
- Misseldine, N.D., Blagrove, R.C., & Goodwin, J.E. (2018). Speed demands of womens rugby sevens match play. Journal of Strength and Conditioning Research, Ahead of print. [Google Scholar]
- Muehlbauer, T., Pabst, J., Granacher, U., & Busch, D. (2017). Validity of the jump-and-reach test in subelite adolescent handball players. Journal of Strength and Conditioning Research, 31(5), 1282–1289. DOI: 10.1519/jsc.0000000000001607. [PubMed] [Google Scholar]
- Nyberg, C.C., & Penpraze, V. (2016). Determination of anthropometric and physiological performance measures in elite scottish female rugby union players. International Journal of Research in Exercise Physiology, 12(1), 10–16. [Google Scholar]
- Ohya, T., Asami, K., Miyazaki, Y., Iwai, Y., Hirai, H., & Ikeda, T. (2015). Anthropometric and physiological characteristics of Japanese elite women’s rugby sevens players. Football Science, 12, 84–90. [Google Scholar]
- Quarrie, K., Handcock, P., Waller, A.E., Chalmers, D., Toomey, M., & Wilson, B. (1995). The New Zealand rugby injury and performance project. III. Anthropometric and physical performance characteristics of players. British Journal of Sports Medicine, 29(4), 263–270. [PubMed] [Google Scholar]
- Quarrie, K.L., Hopkins, W.G., Anthony, M.J., & Gill, N.D. (2013). Positional demands of international rugby union: Evaluation of player actions and movements. Journal of Science and Medicine in Sport, 16(4), 353–359. [PubMed] [Google Scholar]
- Roberts, S.P., Trewartha, G., Higgitt, R.J., El-Abd, J., & Stokes, K.A. (2008). The physical demands of elite English rugby union. Journal of Sports Sciences, 26(8), 825–833. [PubMed] [Google Scholar]
- Schick, D.M., Molloy, M.G., & Wiley, J.P. (2008). Injuries during the 2006 Women’s Rugby World Cup. British Journal of Sports Medicine, 42(6), 447–451. DOI: 10.1136/bjsm.2008.046672. [PubMed] [Google Scholar]
- Sedeaud, A., Marc, A., Schipman, J., Tafflet, M., Hager, J.-P., & Toussaint, J.-F. (2012). How they won Rugby World Cup through height, mass and collective experience. British Journal of Sports Medicine, 46, 580–584. [PubMed] [Google Scholar]
- Sheppy, E., Hills, S.P., Russell, M., Chambers, R., Cunningham, D.J., Shearer, D., Heffernan, S., Waldron, M., McNarry, M., & Kilduff, L.P. (2019). Assessing the whole-match and worst-case scenario locomotor demands of international women’s rugby union match-play. Journal of Science and Medicine in Sport, 23(6), 609–614. DOI: 10.1016/j.jsams.2019.12.016. [PubMed] [Google Scholar]
- Smart, D.J., Hopkins, W.G., & Gill, N.D. (2013). Differences and changes in the physical characteristics of professional and amateur rugby union players. Journal of Strength and Conditioning Research, 27(11), 3033–3044. [PubMed] [Google Scholar]
- Smart, D., Hopkins, W.G., Quarrie, K.L., & Gill, N. (2014). The relationship between physical fitness and game behaviours in rugby union players. European Journal of Sport Science, 14(Suppl 1), S8–S17. [PubMed] [Google Scholar]
- Suarez-Arrones, L., Portillo, J., Pareja-Blanco, F., Saez de Villareal, E., Sanchez-Medina, L., & Munguia-Izquierdo, D. (2014). Match-play activity profile in elite women’s rugby union players. Journal of Strength and Conditioning Research, 28(2), 452–458. DOI: 10.1519/JSC.0b013e3182999e2b. [PubMed] [Google Scholar]
- Tabachnick, B.G., Fidell, L.S., & Ullman, J.B. (2014). Using multivariate statistics (Vol. 6). Boston, MA: Pearson. [Google Scholar]
- Taylor, A.E., Fuller, C.W., & Molloy, M.G. (2011). Injury surveillance during the 2010 IRB Women’s Rugby World Cup. British Journal of Sports Medicine, 45(15), 1243–1245. DOI: 10.1136/bjsports-2011-090024. [PubMed] [Google Scholar]
- Twist, C., & Worsfold, P. (2015). The science of rugby. Abingdon, OX: Routledge. [Google Scholar]
- Vescovi, J., & Goodale, T. (2015). Physical demands of women’s rugby sevens matches: Female athletes in motion (FAiM) study. International Journal of Sports Medicine, 94(11), 887–892. [Google Scholar]
- Virr, J.L., Game, A., Bell, G.J., & Syrotuik, D. (2014). Physiological demands of women’s rugby union: time-motion analysis and heart rate response. Journal of Sports Sciences, 32(3), 239–247. DOI: 10.1080/02640414.2013.823220. [PubMed] [Google Scholar]
- World Rugby. (2018). World Rugby year in review 2017. Retrieved from http://publications.worldrugby.org/yearinreview2017/en/48-1. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.