Accès gratuit
Numéro
Mov Sport Sci/Sci Mot
Numéro 93, 2016
Apport clinique du mouvement : évidence et perspectives
Page(s) 23 - 31
DOI https://doi.org/10.1051/sm/2015034
Publié en ligne 26 janvier 2016
  • Albanese, A., Bhatia, K., Bressman, S.B., DeLong, M.R., Fahn, S., Fung, V.S.C., Hallett, M., Jankovic, J., Jinnah, H.A., Klein, C., Lang, A.E., Mink, J.W., & Teller, J.K. (2013). Phenomenology and classification of dystonia: a consensus update. Movement Disorders, 28, 863–873. [CrossRef] [Google Scholar]
  • Audette, I., Dumas, J.-P., Côté, J.-N., & De Serres, S.-J. (2010). Validity and between-day reliability of the cervical range of motion (CROM) device. The Journal of Orthopaedic and Sports Physical Therapy, 40, 318–323. [CrossRef] [PubMed] [Google Scholar]
  • Begon, M., & Lacouture, P. (2005). Modélisation anthropométrique pour une analyse mécanique du geste sportif, partie 2. Science et Motricité, 55 (2), 35–60. [CrossRef] [EDP Sciences] [Google Scholar]
  • Bertuit, J., Van Geyt, B., & Feipel, V. (2008). Validité et fiabilité des moyens d’évaluation du rachis cervical : revue critique de la littérature. Kinésithérapie Scientifique, 1, 31–40. [Google Scholar]
  • Bleton, J.-P. (2010) Physiotherapy of focal dystonia: a physiotherapist’s personal experience. European Journal of Neurology, 17 (Suppl 1), 107–112. [CrossRef] [PubMed] [Google Scholar]
  • Bonnechère, B., Salvia, P., Dugailly, P.-M., Maroye, L., Van Geyt, B., & Feipel, V. (2014). Influence of movement speed on cervical range of motion. European Spine Journal, 23, 1688–1693. [Google Scholar]
  • Bouisson, L. (2008). Étude cinématique tridimensionnelle du rachis cervical. Comparaison entre sujets sains et pathologiques (thèse de doctorat, Université Claude Bernard - Lyon 1). http://tel.archives-ouvertes.fr/tel-00367705. [Google Scholar]
  • Boussion, L., Bahuaud, P., & Chèze, L. (2011). Proposal of a thorax segment coordinate system for the 3D kinematical analysis of the cervical spine. Computer Methods in Biomechanics and Biomedical Engineering, 14, 1041–1047. [CrossRef] [PubMed] [Google Scholar]
  • Castro, W.H., Sautmann, A., Schilgen, M., & Sautmann, M. (2000). Noninvasive three-dimensional analysis of cervical spine motion in normal subjects in relation to age and sex. An experimental examination. Spine, 25, 443–449. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Consky, E., Basinski, A., Belle, L., Ranawaya, R., & Lang, A. (1990). The Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS). Neurology, 40 (Suppl 1), 445. [Google Scholar]
  • Demaille-Wlodyka, S., Chiquet, C., Lavaste, J.-F., Skalli, W., Revel, M., & Poiraudeau, S. (2007). Cervical range of motion and cephalic kinesthesis: ultrasonographic analysis by age and sex. Spine, 32, 254–261. [CrossRef] [Google Scholar]
  • Duc, C., Salvia, P., Lubansu, A., Feipel, V., & Aminian, K. (2013). Objective evaluation of cervical spine mobility after surgery during free-living activity. Clinical Biomechanics, 28, 364–369. [CrossRef] [MathSciNet] [Google Scholar]
  • Dvir, Z., & Prushansky, T. (2000). Reproducibility and instrument validity of a new ultrasonography-based system for measuring cervical spine kinematics. Clinical Biomechanics, 15, 658–664. [CrossRef] [Google Scholar]
  • Feipel, V., Rondelet, B., Le Pallec, J.-P., & Rooze, M. (1999). Normal global motion of the cervical spine: an electrogoniographic study. Clinical Biomechanics, 14, 462–470. [CrossRef] [Google Scholar]
  • Garric, D., Portero, R., Masson, I., & Portero, P. (2014). Vers la caractérisation des propriétés biomécaniques du segment tête-cou : utilisation de capteurs inertiels 3D – Première étape : étude cinématique. 1ères Journées scientifiques franco-maghrébines : outils et méthodes de caractérisation mécanique des matériaux complexes, Hammamet, Tunisia. [Google Scholar]
  • Hallett, M. (2011). Neurophysiology of dystonia: The role of inhibition. Neurobiology of Disease, 42, 177–184. [CrossRef] [PubMed] [Google Scholar]
  • Hopkins, W.G. (2000). Measures of reliability in sports medicine and science. Sports Medicine, 30, 1–15. [CrossRef] [Google Scholar]
  • Jordan, K., Dziedzic, K., Jones, P.W., Ong, B.N., & Dawes, P.T. (1992). The reliability of the three-dimensional FASTRAK measurement system in measuring cervical spine and shoulder range of motion in healthy subjects Rheumatology, 39, 382–388. [CrossRef] [Google Scholar]
  • Karduna, A., McClure, P., & Michener, L. (2000). Scapular kinematics: effects of altering the Euler angle sequence of rotations. Journal of Biomechanics, 33, 1063–1068. [CrossRef] [PubMed] [Google Scholar]
  • Malmström, E.-M., Karlberg, M., Melander, A., & Magnusson, M. (2003). Zebris versus Myrin: a comparative study between a three-dimensional ultrasound movement analysis and an inclinometer/compass method: intradevice reliability, concurrent validity, intertester comparison, intratester reliability, and intraindividual variability. Spine, 28, 433–440. [CrossRef] [Google Scholar]
  • Mannion, A.F., Klein, G.N., Dvorak, J., & Lanz, C. (2000). Range of global motion of the cervical spine: intraindividual reliability and the influence of measurement device. European Spine Journal, 9, 379–385. [Google Scholar]
  • Marsh, W.A., Monroe, D.M., Brin, M.F., & Gallagher, C.J. (2014). Systematic review and meta-analysis of the duration of clinical effect of onabotulinumtoxinA in cervical dystonia. BMC Neurology, 14, 91. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • McNair, P.J., Portero, P., Chiquet, C., Mawston, G., & Lavaste, F. (2007). Acute neck pain: cervical spine range of motion and position sense prior to and after joint mobilization. Manual Therapy, 12, 390–394. [CrossRef] [PubMed] [Google Scholar]
  • Morphett, A.L., Crawford, C.M., & Lee, D. (2003). The use of electromagnetic tracking technology for measurement of passive cervical range of motion: a pilot study. Journal of Manipulative and Physiological Therapeutics, 26, 152–159. [CrossRef] [PubMed] [Google Scholar]
  • Portero, P. (2009). Évaluation instrumentale de la mobilité et de la force musculaire du rachis cervical : applications cliniques. In S. Bendaya & J.-C. Goussard (Eds.), Le rachis cervical vieillissant (pp. 21–29). Berlin: Springer. [Google Scholar]
  • Prushansky, T., & Dvir, Z. (2008). Cervical motion testing: methodology and clinical implications. Journal of Manipulative Physiological Therapeutics, 31, 503–508. [CrossRef] [Google Scholar]
  • Salvia, P., Champagne, O., Feipel, V., Rooze, M., & de Beyl, D.Z. (2006). Clinical and goniometric evaluation of patients with spasmodic torticollis. Clinical Biomechanics, 21, 323–329. [CrossRef] [Google Scholar]
  • Sleivert, G.G., & Wenger, H.A. (1994). Reliability of measuring isometric and isokinetic peak torque, rate of torque development, integrated electromyography, and tibial nerve conduction velocity. Archives of Physical Medicine and Rehabilitation, 75, 1315–1321. [PubMed] [Google Scholar]
  • Theobald, P.S., Jones, M.D., & Williams, J.M. (2012). Do inertial sensors represent a viable method to reliably measure cervical spine range of motion? Manual Therapy, 17, 92–96. [CrossRef] [PubMed] [Google Scholar]
  • Trott, P.H., Pearcy, M.J., Ruston, S.A., Fulton, I., & Brien, C. (1996). Three-dimensional analysis of active cervical motion: the effect of age and gender. Clinical Biomechanics, 11, 201–206. [CrossRef] [Google Scholar]
  • Watier, B. (2006). Comportement mécanique du rachis cervical : une revue de littérature. ITBM-RBM, 27, 92–106. [CrossRef] [MathSciNet] [Google Scholar]
  • Wu, G. (2002). ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion – part I: ankle, hip, and spine. Journal of Biomechanics, 35, 543–548. [CrossRef] [PubMed] [Google Scholar]
  • Xing, Y., Madded, M.G., Duggan, J., & Lyons, G.J. (2003). Distributed regression for heterogeneous data sets. In M.R. Berthold, H.J. Lenz, E. Bradley, R. Kruse, & C. Borgelt (Eds.), Advances in intelligent data analysis V (Lecture notes in computer science 2810) (pp. 544–553). Berlin: Springer. [Google Scholar]
  • Youdas, J.W., Garrett, T.R., Suman, V.J., Bogard, C.L., Hallman, H.O., & Carey, J.R. (1992). Normal range of motion of the cervical spine: an initial goniometric study. Physical Therapy, 72, 770–780. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.