Free Access
Issue
Mov Sport Sci/Sci Mot
Number 93, 2016
Apport clinique du mouvement : évidence et perspectives
Page(s) 23 - 31
DOI https://doi.org/10.1051/sm/2015034
Published online 26 January 2016
  • Albanese, A., Bhatia, K., Bressman, S.B., DeLong, M.R., Fahn, S., Fung, V.S.C., Hallett, M., Jankovic, J., Jinnah, H.A., Klein, C., Lang, A.E., Mink, J.W., & Teller, J.K. (2013). Phenomenology and classification of dystonia: a consensus update. Movement Disorders, 28, 863–873. [CrossRef] [Google Scholar]
  • Audette, I., Dumas, J.-P., Côté, J.-N., & De Serres, S.-J. (2010). Validity and between-day reliability of the cervical range of motion (CROM) device. The Journal of Orthopaedic and Sports Physical Therapy, 40, 318–323. [CrossRef] [PubMed] [Google Scholar]
  • Begon, M., & Lacouture, P. (2005). Modélisation anthropométrique pour une analyse mécanique du geste sportif, partie 2. Science et Motricité, 55 (2), 35–60. [CrossRef] [EDP Sciences] [Google Scholar]
  • Bertuit, J., Van Geyt, B., & Feipel, V. (2008). Validité et fiabilité des moyens d’évaluation du rachis cervical : revue critique de la littérature. Kinésithérapie Scientifique, 1, 31–40. [Google Scholar]
  • Bleton, J.-P. (2010) Physiotherapy of focal dystonia: a physiotherapist’s personal experience. European Journal of Neurology, 17 (Suppl 1), 107–112. [CrossRef] [PubMed] [Google Scholar]
  • Bonnechère, B., Salvia, P., Dugailly, P.-M., Maroye, L., Van Geyt, B., & Feipel, V. (2014). Influence of movement speed on cervical range of motion. European Spine Journal, 23, 1688–1693. [Google Scholar]
  • Bouisson, L. (2008). Étude cinématique tridimensionnelle du rachis cervical. Comparaison entre sujets sains et pathologiques (thèse de doctorat, Université Claude Bernard - Lyon 1). http://tel.archives-ouvertes.fr/tel-00367705. [Google Scholar]
  • Boussion, L., Bahuaud, P., & Chèze, L. (2011). Proposal of a thorax segment coordinate system for the 3D kinematical analysis of the cervical spine. Computer Methods in Biomechanics and Biomedical Engineering, 14, 1041–1047. [CrossRef] [PubMed] [Google Scholar]
  • Castro, W.H., Sautmann, A., Schilgen, M., & Sautmann, M. (2000). Noninvasive three-dimensional analysis of cervical spine motion in normal subjects in relation to age and sex. An experimental examination. Spine, 25, 443–449. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Consky, E., Basinski, A., Belle, L., Ranawaya, R., & Lang, A. (1990). The Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS). Neurology, 40 (Suppl 1), 445. [Google Scholar]
  • Demaille-Wlodyka, S., Chiquet, C., Lavaste, J.-F., Skalli, W., Revel, M., & Poiraudeau, S. (2007). Cervical range of motion and cephalic kinesthesis: ultrasonographic analysis by age and sex. Spine, 32, 254–261. [CrossRef] [Google Scholar]
  • Duc, C., Salvia, P., Lubansu, A., Feipel, V., & Aminian, K. (2013). Objective evaluation of cervical spine mobility after surgery during free-living activity. Clinical Biomechanics, 28, 364–369. [CrossRef] [MathSciNet] [Google Scholar]
  • Dvir, Z., & Prushansky, T. (2000). Reproducibility and instrument validity of a new ultrasonography-based system for measuring cervical spine kinematics. Clinical Biomechanics, 15, 658–664. [CrossRef] [Google Scholar]
  • Feipel, V., Rondelet, B., Le Pallec, J.-P., & Rooze, M. (1999). Normal global motion of the cervical spine: an electrogoniographic study. Clinical Biomechanics, 14, 462–470. [CrossRef] [Google Scholar]
  • Garric, D., Portero, R., Masson, I., & Portero, P. (2014). Vers la caractérisation des propriétés biomécaniques du segment tête-cou : utilisation de capteurs inertiels 3D – Première étape : étude cinématique. 1ères Journées scientifiques franco-maghrébines : outils et méthodes de caractérisation mécanique des matériaux complexes, Hammamet, Tunisia. [Google Scholar]
  • Hallett, M. (2011). Neurophysiology of dystonia: The role of inhibition. Neurobiology of Disease, 42, 177–184. [CrossRef] [PubMed] [Google Scholar]
  • Hopkins, W.G. (2000). Measures of reliability in sports medicine and science. Sports Medicine, 30, 1–15. [CrossRef] [Google Scholar]
  • Jordan, K., Dziedzic, K., Jones, P.W., Ong, B.N., & Dawes, P.T. (1992). The reliability of the three-dimensional FASTRAK measurement system in measuring cervical spine and shoulder range of motion in healthy subjects Rheumatology, 39, 382–388. [CrossRef] [Google Scholar]
  • Karduna, A., McClure, P., & Michener, L. (2000). Scapular kinematics: effects of altering the Euler angle sequence of rotations. Journal of Biomechanics, 33, 1063–1068. [CrossRef] [PubMed] [Google Scholar]
  • Malmström, E.-M., Karlberg, M., Melander, A., & Magnusson, M. (2003). Zebris versus Myrin: a comparative study between a three-dimensional ultrasound movement analysis and an inclinometer/compass method: intradevice reliability, concurrent validity, intertester comparison, intratester reliability, and intraindividual variability. Spine, 28, 433–440. [CrossRef] [Google Scholar]
  • Mannion, A.F., Klein, G.N., Dvorak, J., & Lanz, C. (2000). Range of global motion of the cervical spine: intraindividual reliability and the influence of measurement device. European Spine Journal, 9, 379–385. [Google Scholar]
  • Marsh, W.A., Monroe, D.M., Brin, M.F., & Gallagher, C.J. (2014). Systematic review and meta-analysis of the duration of clinical effect of onabotulinumtoxinA in cervical dystonia. BMC Neurology, 14, 91. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • McNair, P.J., Portero, P., Chiquet, C., Mawston, G., & Lavaste, F. (2007). Acute neck pain: cervical spine range of motion and position sense prior to and after joint mobilization. Manual Therapy, 12, 390–394. [CrossRef] [PubMed] [Google Scholar]
  • Morphett, A.L., Crawford, C.M., & Lee, D. (2003). The use of electromagnetic tracking technology for measurement of passive cervical range of motion: a pilot study. Journal of Manipulative and Physiological Therapeutics, 26, 152–159. [CrossRef] [PubMed] [Google Scholar]
  • Portero, P. (2009). Évaluation instrumentale de la mobilité et de la force musculaire du rachis cervical : applications cliniques. In S. Bendaya & J.-C. Goussard (Eds.), Le rachis cervical vieillissant (pp. 21–29). Berlin: Springer. [Google Scholar]
  • Prushansky, T., & Dvir, Z. (2008). Cervical motion testing: methodology and clinical implications. Journal of Manipulative Physiological Therapeutics, 31, 503–508. [CrossRef] [Google Scholar]
  • Salvia, P., Champagne, O., Feipel, V., Rooze, M., & de Beyl, D.Z. (2006). Clinical and goniometric evaluation of patients with spasmodic torticollis. Clinical Biomechanics, 21, 323–329. [CrossRef] [Google Scholar]
  • Sleivert, G.G., & Wenger, H.A. (1994). Reliability of measuring isometric and isokinetic peak torque, rate of torque development, integrated electromyography, and tibial nerve conduction velocity. Archives of Physical Medicine and Rehabilitation, 75, 1315–1321. [PubMed] [Google Scholar]
  • Theobald, P.S., Jones, M.D., & Williams, J.M. (2012). Do inertial sensors represent a viable method to reliably measure cervical spine range of motion? Manual Therapy, 17, 92–96. [CrossRef] [PubMed] [Google Scholar]
  • Trott, P.H., Pearcy, M.J., Ruston, S.A., Fulton, I., & Brien, C. (1996). Three-dimensional analysis of active cervical motion: the effect of age and gender. Clinical Biomechanics, 11, 201–206. [CrossRef] [Google Scholar]
  • Watier, B. (2006). Comportement mécanique du rachis cervical : une revue de littérature. ITBM-RBM, 27, 92–106. [CrossRef] [MathSciNet] [Google Scholar]
  • Wu, G. (2002). ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion – part I: ankle, hip, and spine. Journal of Biomechanics, 35, 543–548. [CrossRef] [PubMed] [Google Scholar]
  • Xing, Y., Madded, M.G., Duggan, J., & Lyons, G.J. (2003). Distributed regression for heterogeneous data sets. In M.R. Berthold, H.J. Lenz, E. Bradley, R. Kruse, & C. Borgelt (Eds.), Advances in intelligent data analysis V (Lecture notes in computer science 2810) (pp. 544–553). Berlin: Springer. [Google Scholar]
  • Youdas, J.W., Garrett, T.R., Suman, V.J., Bogard, C.L., Hallman, H.O., & Carey, J.R. (1992). Normal range of motion of the cervical spine: an initial goniometric study. Physical Therapy, 72, 770–780. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.