Open Access
Publication ahead of print
Journal
Mov Sport Sci/Sci Mot
DOI https://doi.org/10.1051/sm/2024027
Published online 04 March 2025
  • Adams, I.L., Lust, J.M., Wilson, P.H., & Steenbergen, B. (2014). Compromised motor control in children with DCD: A deficit in the internal model? − A systematic review. Neuroscience & Biobehavioral Reviews, 47, 225–244. [Google Scholar]
  • American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders: DSM-5. Washington, D.C. : Author. [Google Scholar]
  • Barhoun, P., Fuelscher, I., Kothe, E.J., He, J.L., Youssef, G.J., Enticott, P.G., Williams, J., & Hyde, C. (2019). Motor imagery in children with DCD: A systematic and meta-analytic review of hand-rotation task performance. Neuroscience & Biobehavioral Reviews, 99, 282–297. [Google Scholar]
  • Barhoun, P., Fuelscher, I., Do, M., He, J.L., Bekkali, S., Cerins, A., Youssef, G.J., Williams, J., Enticott, P.G., & Hyde, C. (2021). Mental rotation performance in young adults with and without developmental coordination disorder. Human Movement Science, 77, 102787. [Google Scholar]
  • Béguet, M., & Albaret, J.M. (1998). Étalonnage du Purdue Pegboard sur une population d’enfants de 6 à 10 ans. Approche Neuropsychologique des Apprentissages chez l’Enfant , 10(1), 19–25. [Google Scholar]
  • Bernaud, J-L. (2007). Introduction à la psychométrie. Paris : Dunod. [Google Scholar]
  • Blanca, M.J., Alarcón, R., Arnau, J., Bono, R., & Bendayan, R. (2017). Non-normal data: Is ANOVA still a valid option? Psicothema, 29(4), 552–557. [Google Scholar]
  • Blank, R., Barnett, A., Cairney, J., Green, D., Kirby, A., Polatajko, H., Rosenblum, S., Smits-Engelsman, B., Sugden, D., Wilson, P., Vinçon, S. (2019). International clinical practice recommendations on the definition, diagnosis, assessment, intervention, and psychosocial aspects of developmental coordination disorder. Developmental Medicine & Child Neurology, 61(3), 242–285. [Google Scholar]
  • Broc, G., Carlsberg, M., Cazauvieilh, C., Faury, S., & Loyal, D. (2016). Stats faciles avec R : guide pratique. Louvain-La-Neuve, B : De Boeck Supérieur. [Google Scholar]
  • Caeyenberghs, K., Wilson, P.H., Van Roon, D., Swinnen, S.P., & Smits-Engelsman, B.C. (2009). Increasing convergence between imagined and executed movement across development: Evidence for the emergence of movement representations. Developmental Science, 12(3), 474–483. [Google Scholar]
  • Cicchetti, D.V. (1994). Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychological Assessment, 6(4), 284. [Google Scholar]
  • Cooper, L.A., & Shepard, R.N. (1975). Mental transformation in the identification of left and right hands. Journal of Experimental psychology: Human Perception and Performance, 104(1), 48–56. [Google Scholar]
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences, 2nd ed. Hillsdale, NJ : Erlbaum. [Google Scholar]
  • Corraze, J. (1999). Les troubles psychomoteurs. Marseille : Solal. [Google Scholar]
  • Expertise Collective INSERM. (2019). Trouble développemental de la coordination ou dyspraxie. Paris : Les Éditions EDP Sciences. [Google Scholar]
  • Fournier, M., & Albaret, J.-M. (2013). Étalonnage des blocs de Corsi sur une population d’enfants scolarisés du CP à la 6ème. Développements, 3, 76–82. [Google Scholar]
  • Garcia Carrasco, D., & Aboitiz Cantalapiedra, J. (2016). Effectiveness of motor imagery or mental practice in functional recovery after stroke: A systematic review. Neurología (English Edition), 31(1), 43–52. [Google Scholar]
  • Guillot, A., Hoyek, N., Louis, M., & Collet, C. (2012). Understanding the timing of motor imagery: Recent findings and future directions. International Review of Sport and Exercise Psychology, 5(1), 3–22. [Google Scholar]
  • Guillot, A., Collet, C., Nguyen, V.A., Malouin, F., Richards, C., & Doyon, J. (2008). Functional neuroanatomical networks associated with expertise in motor imagery. Neuroimage, 41(4), 1471–1483. [CrossRef] [PubMed] [Google Scholar]
  • Hankins, M. (2007). Questionnaire discrimination: (Re)-introducing coefficient δ. BMC Medical Research Methodology, 7, 19. [CrossRef] [PubMed] [Google Scholar]
  • Hankins, M. (2008). Discrimination and reliability: Equal partners? Understanding the role of discriminative instruments in HRQoL research: Can Ferguson’s Delta help? A response. Health and Quality of Life Outcomes, 6, 83. [Google Scholar]
  • JASP TEAM. (2016). JASP, Version 0.9.2.0. https://jasp-stats.org. [Google Scholar]
  • Laveault, D., & Grégoire, J. (2023). Introduction aux théories des tests en psychologie et en sciences de l’éducation, 4e éd. Louvain-la-Neuve : De Boeck Supérieur. [Google Scholar]
  • Lebon, F., Byblow, W.D., Collet, C., Guillot, A., & Stinear, C.M. (2012). The modulation of motor cortex excitability during motor imagery depends on imagery quality. European Journal of Neuroscience, 35(2), 323–331. [Google Scholar]
  • Lebon, F., Lotze, M., Stinear, C.M., & Byblow, W.D. (2012). Task-dependent interaction between parietal and contralateral primary motor cortex during explicit versus implicit motor imagery. PLoS One, 7(5), e37850. [Google Scholar]
  • López, N.D., Monge Pereira, E., Centeno, E.J., & Miangolarra Page, J.C. (2019). Motor imagery as a complementary technique for functional recovery after stroke: A systematic review. Topics in Stroke Rehabilitation, 26(8), 576–587. [Google Scholar]
  • Lotze, M., & Halsband, U. (2006). Motor imagery. Journal of Physiology, 99(4-6), 386–395. [Google Scholar]
  • Marquet Doléac, J., Soppelsa, R., & Albaret, J.-M. (2016). MABC-2 : batterie d’évaluation du mouvement chez l’enfant – 2e édition (MABC-2) – adaptation française. Montreuil : Pearson. [Google Scholar]
  • Monany, D.R., Papaxanthis, C., Guillot, A., & Lebon, F. (2022). Motor imagery and action observation following immobilization-induced hypoactivity: A narrative review. Annals of Physical and Rehabilitation Medicine, 65(4), 101541. [CrossRef] [PubMed] [Google Scholar]
  • Morone, G., Ghanbari Ghooshchy, S., Pulcini, C., Spangu, E., Zoccolotti, P., Martelli, M., Spitoni, G.F., Russo, V., Ciancarelli, I., Paolucci, S., & Iosa, M. (2022). Motor Imagery and Sport Performance: A Systematic Review on the PETTLEP Model. Applied Sciences, 12(19), 9753. doi: 0.3390/app12199753. [CrossRef] [Google Scholar]
  • Parsons, L.M. (1994). Temporal and kinematic properties of motor behavior reflected in mentally simulated action. Journal of Experimental Psychology, Human Perception and Performance, 20, 709–730. [Google Scholar]
  • Puyjarinet, F. (2019). Intérêts de la pratique de l’imagerie motrice dans la rééducation de l’écriture des enfants dysgraphiques. Approche Neuropsychologique des Apprentissages chez l’Enfant, 159, 257–267. [Google Scholar]
  • Puyjarinet, F., Soppelsa, R., & Connan, J.-F. (2020). Le test d’imagerie motrice implicite (TIMI-1) : standardisation et étalonnage chez des enfants de 7 à 11 ans. Approche Neuropsychologique des Apprentissages chez l’Enfant, 167, 480–494. [Google Scholar]
  • Puyjarinet, F., Madramany, P., Autexier, A., Madieu, M., Nesensohn, J., & Biotteau, M. (2022). Psychomotor intervention to improve handwriting skills in children with ADHD: A single-case experimental design with direct inter-subject and systematic replications. Neuropsychological Rehabilitation, 33(9), 1537–1563. doi: 10.1080/09602011.2022.2114503. [Google Scholar]
  • Puyjarinet, F., Connan, J.-F., Maury, L., & Soppelsa, R. (2023). Étalonnage et validation d’un questionnaire d’évaluation des capacités d’imagerie motrice sur une population développementale : le QUIMOT. Approche Neuropsychologique des Apprentissages chez l’Enfant, 183, 215–228. [Google Scholar]
  • R Core Team. (2023). R: A Language and Environment for Statistical Computing. Vienna (Austria) : R Foundation for Statistical Computing. https://www.R-project.org/. [Google Scholar]
  • Reed, J., & Warner-Rogers, J. (2008). Child Neuropsychology: Concept, Theory and Practice. Oxford : Wiley-Blackwell. [Google Scholar]
  • Robin, N., & Dominique, L. (2022). Mental imagery and tennis: A review, applied recommendations and new research directions. Movement & Sport Sciences-Science & Motricité, online ahead of print. [Google Scholar]
  • Ruffino, C., Papaxanthis, C., & Lebon, F. (2017). Neural plasticity during motor learning with motor imagery practice: Review and perspectives. Neuroscience, 341, 61–78. [Google Scholar]
  • Schmider, E., Ziegler, M., Danay, E., Beyer, L., & Bühner, M. (2010). Is it really robust? Reinvestigating the robustness of ANOVA against violations of the normal distribution assumption. Methodology: European Journal of Research Methods for the Behavioral and Social Sciences , 6(4), 147–151. doi: 10.1027/1614-2241/a000016. [Google Scholar]
  • Scott, M.W., Wood, G., Holmes, P.S., Williams, J., Marshall, B., & Wright, D.J. (2021). Combined action observation and motor imagery: An intervention to combat the neural and behavioural deficits associated with developmental coordination disorder. Neuroscience & Biobehavioral Reviews, 127, 638–646. [Google Scholar]
  • Shenton, J.T., Schwoebel, J., & Coslett, H.B. (2004). Mental motor imagery and the body schema: Evidence for proprioceptive dominance. Neuroscience Letters, 370(1), 19–24. [Google Scholar]
  • Shepard, R.N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171(3972), 701–703. [Google Scholar]
  • Shrout, P.E. (1998). Measurement reliability and agreement in psychiatry. Statistical Methods in Medical Research, 7(3), 301–317. [Google Scholar]
  • Sirigu, A., & Duhamel, J.R. (2001). Motor and visual imagery as two complementary but neurally dissociable mental processes. Journal of Cognitive Neuroscience, 13(7), 910–919. [Google Scholar]
  • Smits-Engelsman, B.C., & Wilson, P.H. (2013). Noise, variability and motor performance in developmental coordination disorder. Developmental Medicine & Child Neurology 2013, 55(Suppl. 4), 69–72. [Google Scholar]
  • Spruijt, S., van der Kamp, J., & Steenbergen, B. (2015). Current insights in the development of children’s motor imagery ability. Frontiers in Psychology, 6, 787. [Google Scholar]
  • ter Horst, A.C., Van Lier, R., & Steenbergen, B. (2010). Mental rotation task of hands: Differential influence number of rotational axes. Experimental Brain Research, 203(2), 347–354. [Google Scholar]
  • Thorsson, M., Galazka, M.A., Hajjari, P., Fernell, E., Delafield-Butt, J., Gillberg, C., Johnson, M., Åsberg Johnels, J., & Hadjikhani, N. (2023). A novel tablet-based motor coordination test performs on par with the Beery VMI subtest and offers superior temporal metrics: Findings from children with pediatric acute-onset neuropsychiatric syndrome. Experimental Brain Research, 241(5), 1421–1436. [Google Scholar]
  • Williams, J., Thomas, P.R., Maruff, P., & Wilson, P.H. (2008). The link between motor impairment level and motor imagery ability in children with developmental coordination disorder. Human Movement Science, 27(2), 270–285. [Google Scholar]
  • Wilson, P.H., Adams, I.L., Caeyenberghs, K., Thomas, P., Smits-Engelsman, B., & Steenbergen, B. (2016). Motor imagery training enhances motor skill in children with DCD: A replication study. Research in Developmental Disabilities, 57, 54–62. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.