Free Access
Mov Sport Sci/Sci Mot
Number 100, 2018
Page(s) 59 - 67
Published online 23 January 2018
  • Arai, N., Okabe, S., Furubayashi, T., Mochizuki, H., Iwata, N.K., Hanajima, R., et al. (2007). Differences in after-effect between monophasic and biphasic high-frequency rTMS of the human motor cortex. Clinical Neurophysiology , 118/10, 2227–2233. DOI: 10.1016/j.clinph.2007.07.006. [CrossRef] [Google Scholar]
  • Barker, A.T., Jalinoous, R., & Freeston, I.L. (1985). Non-invasive magnetic stimulation of human motor cortex. The Lancet , 11/1, 1106–1107. [CrossRef] [PubMed] [Google Scholar]
  • Caparelli, E.C., Backus, W., Telang, F., Wang, G.J., Maloney, T., Goldstein, R., & Henn, F. (2012). Is 1 Hz rTMS Always Inhibitory in Healthy Individuals? The Open Neuroimaging Journal , 6, 69–74. [CrossRef] [PubMed] [Google Scholar]
  • Chang, M.C., Kim, D.Y., & Park, D.H. (2015). Enhancement of cortical excitability and lower limb motor function in patients with stroke by transcranial direct current stimulation. Brain Stimulation , 8/3, 561–566. DOI: 10.1016/j.brs.2015.01.411. [CrossRef] [PubMed] [Google Scholar]
  • Chhatbar, P.Y., Ramakrishnan, V., Kautz, S., George, M.S., Adams, R.J., & Feng, W. (2016). Transcranial direct current stimulation post-stroke upper extremity motor recovery studies exhibit a dose-response relationship. Brain Stimulation , 9/1, 16–26. DOI: 10.1016/j.brs.2015.09.002. [CrossRef] [PubMed] [Google Scholar]
  • Chhatbar, P.Y., Chen, R., Deardorff, R., Dellenbach, B., Kautz, S.A., George, M.S., & Feng, W. (2017). Safety and tolerability of transcranial direct current stimulation to stroke patients – A phase I current escalation study. Brain Stimulation. DOI: 10.1016/j.brs.2017.02.007. [Google Scholar]
  • Corti, M., Patten, C., & Triggs, W. (2012). Repetitive transcranial magnetic stimulation of motor cortex after stroke: a focused review. American Journal of Physical Medicine & Rehabilitation , 91/3, 254–270. DOI: 10.1097/PHM.0b013e318228bf0c. [CrossRef] [PubMed] [Google Scholar]
  • Davidson, T., & Tremblay, F. (2013). Hemispheric differences in corticospinal excitability and in transcallosal inhibition in relation to degree of handedness. PLoS One , 8/7, e70286. DOI: 10.1371/journal.pone.0070286. [CrossRef] [PubMed] [Google Scholar]
  • Davidson, T.W., Bolic, M., & Tremblay, F. (2016). Predicting modulation in corticomotor excitability and in transcallosal inhibition in response to anodal transcranial direct current stimulation. Frontiers in Human Neuroscience , 10, 49. DOI: 10.3389/fnhum.2016.00049. [CrossRef] [PubMed] [Google Scholar]
  • Di Lazzaro, V., Dileone, M., Capone, F., Pellegrino, G., Ranieri, F., Musumeci, G., et al. (2014). Immediate and late modulation of interhemipheric imbalance with bilateral transcranial direct current stimulation in acute stroke. Brain Stimulation , 7/6, 841–848. DOI: 10.1016/j.brs.2014.10.001. [CrossRef] [PubMed] [Google Scholar]
  • Di Pino, G., Pellegrino, G., Assenza, G., Capone, F., Ferreri, F., Formica, D., et al. (2014). Modulation of brain plasticity in stroke: a novel model for neurorehabilitation. Nature Reviews Neurology , 10/10, 597–608. DOI: 10.1038/nrneurol.2014.162. [CrossRef] [PubMed] [Google Scholar]
  • Dobek, C.E., Blumberger, D.M., Downar, J., Daskalakis, Z.J., & Vila-Rodriguez, F. (2015). Risk of seizures in transcranial magnetic stimulation: a clinical review to inform consent process focused on bupropion. Neuropsychiatric Disease and Treatment , 11, 2975–2987. DOI: 10.2147/NDT.S91126Risk.10.2147/NDT.S91126Neuropsychiatric. [PubMed] [Google Scholar]
  • Edwards, D., Cortes, M., Datta, A., Minhas, P., Wassermann, E.M., & Bikson, M. (2013). Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: a basis for high-definition tDCS. Neuroimage , 74, 266–275. DOI: 10.1016/j.neuroimage.2013.01.042. [CrossRef] [PubMed] [Google Scholar]
  • Ferbert, A., Priori, A., Rothwell, J.C., Day, B.L., Colebatch, J.G., & Mardsen, C.D. (1992). Interhemispheric inhibition of the human motor cortex. Journal of Physiology , 453, 525–546. [CrossRef] [Google Scholar]
  • Fitzgerald, P.B., Fountain, S., & Daskalakis, Z.J. (2006). A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clinical Neurophysiology , 117/12, 2584–2596. DOI: 10.1016/j.clinph.2006.06.712. [CrossRef] [Google Scholar]
  • Gandiga, P.C., Hummel, F.C., & Cohen, L.G. (2006). Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clinical Neurophysiology , 117/4, 845–850. DOI: 10.1016/j.clinph.2005.12.003. [CrossRef] [Google Scholar]
  • Gilio, F., Rizzo, V., Siebner, H.R., & Rothwell, J.C. (2003). Effects on the right motor hand-area excitability produced by low-frequency rTMS over human contralateral homologous cortex. The Journal of Physiology , 551/Pt 2, 563–573. DOI: 10.1113/jphysiol.2003.044313. [CrossRef] [PubMed] [Google Scholar]
  • Hamada, M., Murase, N., Hasan, A., Balaratnam, M., & Rothwell, J.C. (2013). The role of interneuron networks in driving human motor cortical plasticity. Cerebral Cortex , 23/7, 1593–1605. DOI: 10.1093/cercor/bhs147. [CrossRef] [Google Scholar]
  • Hao, Z., Wang, D., Zeng, Y., & Liu, M. (2013). Repetitive transcranial magnetic stimulation for improving function after stroke (Review). Cochrane Database of Systematic Reviews, 5, CD008862. [Google Scholar]
  • Hendy, A.M., & Kidgell, D.J. (2014). Anodal-tDCS applied during unilateral strength training increases strength and corticospinal excitability in the untrained homologous muscle. Experimental Brain Research , 232/10, 3243–3252. DOI: 10.1007/s00221-014-4016-8. [CrossRef] [PubMed] [Google Scholar]
  • Hermens, H.J., Freriks, B., Disselhorst-Klug, C., & Rau, G. (2000). The recommendations for sensors and sensor placement procedures for surface electromyography. Journal of Electromyography and Kinesiology , 10/5, 361–374. [CrossRef] [Google Scholar]
  • Hoyer, E.H., & Celnik, P.A. (2011). Understanding and enhancing motor recovery after stroke using transcranial magnetic stimulation. Restorative Neurology and Neuroscience , 29/6, 395–409. DOI: 10.3233/RNN-2011-0611. [PubMed] [Google Scholar]
  • Jasper, H.H. (1958). Report of the committee on methods of clinical examination in electroencephalography. Electroencephalography and Clinical Neurophysiology , 10, 370–375. [Google Scholar]
  • Jeffery, D.T., Norton, J.A., Roy, F.D., & Gorassini, M.A. (2007). Effects of transcranial direct current stimulation on the excitability of the leg motor cortex. Experimental Brain Research , 182/2, 281–287. DOI: 10.1007/s00221-007-1093-y. [CrossRef] [PubMed] [Google Scholar]
  • Jo, J.M., Kim, Y.H., Ko, M.H., Ohn, S.H., Joen, B., & Lee, K.H. (2009). Enhancing the working memory of stroke patients using tDCS. American Journal of Physical Medicine & Rehabilitation , 88/5, 404–409. DOI: 10.1097/PHM.0b013e3181a0e4cb. [CrossRef] [PubMed] [Google Scholar]
  • Kaminski, E., Hoff, M., Sehm, B., Taubert, M., Conde, V., Steele, C.J., et al. (2013). Effect of transcranial direct current stimulation (tDCS) during complex whole body motor skill learning. Neuroscience Letters , 552, 76–80. DOI: 10.1016/j.neulet.2013.07.034. [CrossRef] [PubMed] [Google Scholar]
  • Kuo, H.I., Bikson, M., Datta, A., Minhas, P., Paulus, W., Kuo, M.F., & Nitsche, M.A. (2013). Comparing cortical plasticity induced by conventional and high-definition 4×1 ring tDCS: a neurophysiological study. Brain Stimulation , 6/4, 644–648. DOI: 10.1016/j.brs.2012.09.010. [CrossRef] [PubMed] [Google Scholar]
  • Lang, N., Nitsche, M.A., Paulus, W., Rothwell, J.C., & Lemon, R.N. (2004). Effects of transcranial direct current stimulation over the human motor cortex on corticospinal and transcallosal excitability. Experimental Brain Research , 156/4, 439–443. DOI: 10.1007/s00221-003-1800-2. [CrossRef] [PubMed] [Google Scholar]
  • Li, H., Zhao, G., Zhou, Y., Chen, X., Ji, Z., & Wang, L. (2014). Relationship of EMG/SMG features and muscle strength level: an exploratory study on tibialis anterior muscles during plantar-flexion among hemiplegia patients. Biomedical Engineering Online, 13, 5. DOI: 10.1186/1475-925X-13-5. [Google Scholar]
  • Lopez-Alonso, V., Fernandez-Del-Olmo, M., Costantini, A., Gonzalez-Henriquez, J.J., & Cheeran, B. (2015). Intra-individual variability in the response to anodal transcranial direct current stimulation. Clinical Neurophysiology , 126/12, 2342–2347. DOI: 10.1016/j.clinph.2015.03.022. [CrossRef] [Google Scholar]
  • Maeda, F., Keenan, J.P., Tormos, J.M., Topka, H., & Pascual-Leone, A. (2000). Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability. Experimental Brain Research , 133/4, 425–430. DOI: 10.1007/s002210000432. [CrossRef] [PubMed] [Google Scholar]
  • Meyer, B.U., Roricht, S., Grafin von Einsiedel, H., Kruggel, F., & Weindl, A. (1995). Inhibitory and excitatory interhemispheric transfers between motor cortical areas in normal humans and patients with abnormalities of the corpus callosum. Brain , 118, 429–440. [CrossRef] [PubMed] [Google Scholar]
  • Monte-Silva, K., Kuo, M.F., Hessenthaler, S., Fresnoza, S., Liebetanz, D., Paulus, W., & Nitsche, M.A. (2013). Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain Stimulation , 6/3, 424–432. DOI: 10.1016/j.brs.2012.04.011. [CrossRef] [PubMed] [Google Scholar]
  • Muthalib, M., Besson, P., Rothwell, J.C., Ward, E.T., & Perrey, S. (2016a). Effects of anodal high-definition transcranial direct current stimlation on bilateral sensorimotor cortex activation during sequential finger movements: an fNIRS study. Advances in Experimental Medicine and Biology , 876, 351–359. [CrossRef] [PubMed] [Google Scholar]
  • Muthalib, M., Besson, P., Rothwell, J.C., Ward, T., & Perrey, S. (2016b). Effects of anodal high-definition transcranial direct current stimulation on bilateral sensorimotor cortex activation during sequential finger movements: an fNIRS study. Advances in Experimental Medicine and Biology , 876, 351–359. DOI: 10.1007/978-1-4939-3023-4_44. [CrossRef] [PubMed] [Google Scholar]
  • Muthalib, M., Cabibel, V., Rothwell, J.C., Teo, W.P., & Perrey, S. (2017). Effects of HD-tDCS and crossed-facilitation on interhemispheric interactions. Brain Stimulation , 10, 346–540. DOI: 10.1016/j.brs.2017.01.356. [Google Scholar]
  • Nitsche, M.A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology , 527/3, 633–639. [CrossRef] [Google Scholar]
  • Nowak, D.A., Grefkes, C., Ameli, M., & Fink, G.R. (2009). Interhemispheric competition after stroke" brain stimulation to enhance recovery of function of the affected hand. Neurorehabilitation and Neural Repair , 23/7, 641–656. [CrossRef] [PubMed] [Google Scholar]
  • Oldfield, R.C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia , 9, 97–113. [CrossRef] [PubMed] [Google Scholar]
  • Pereira, L.S., Muller, V.T., da Mota Gomes, M., Rotenberg, A., & Fregni, F. (2016). Safety of repetitive transcranial magnetic stimulation in patients with epilepsy: A systematic review. Epilepsy & behavior , 57/Pt A, 167–176. DOI: 10.1016/j.yebeh.2016.01.015. [CrossRef] [Google Scholar]
  • Priori, A., Hallett, M., & Rothwell, J.C. (2009). Repetitive transcranial magnetic stimulation or transcranial direct current stimulation ? Brain Stimulation , 2/4, 241–245. DOI: 10.1016/j.brs.2009.02.004. [CrossRef] [PubMed] [Google Scholar]
  • Richardson, J.T.E. (2011). Eta squared and partial eta squared as measures of effect size in educational research. Educational Research Review , 6/2, 135–147. DOI: 10.1016/j.edurev.2010.12.001. [CrossRef] [Google Scholar]
  • Ridding, M.C., & Rothwell, J.C. (2007). Is there a future for therapeutic use of transcranial magnetic stimulation? Nature Neuroscience , 8, 559–568. [Google Scholar]
  • Rossini, P.M., Barker, A.T., Berardelli, A., Caramia, M.D., Caruso, G., Cracco, R.Q., et al. (1994). Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures fort routine clinical application. Report of an IFCN committee. Electroencephalography and Clinical Neurophysiology , 91, 79–92. [CrossRef] [PubMed] [Google Scholar]
  • Rothwell, J.C., Hallett, M., Berardelli, A., Eisen, A., Rossini, P.M., & Paulus, W. (1999). Magnetic stimulation: motor evoked potentials. Electroencephalography and Clinical Neurophysiology , 52, 97–103. [Google Scholar]
  • Schambra, H.M., Sawaki, L., & Cohen, L.G. (2003). Modulation of excitability of human motor cortex (M1) by 1 Hz transcranial magnetic stimulation of the contralateral M1. Clinical Neurophysiology , 114, 130–133. [CrossRef] [Google Scholar]
  • Schlaug, G., Renga, V., & Nair, D. (2008). Transcranial direct current stimulation in stroke recovery. Archives of Neurology , 65/12, 1571–1576. DOI: 10.1001/archneur.65.12.1571. [CrossRef] [PubMed] [Google Scholar]
  • Schulz, R., Gerloff, C., & Hummel, F.C. (2013). Non-invasive brain stimulation in neurological diseases. Neuropharmacology , 64, 579–587. DOI: 10.1016/j.neuropharm.2012.05.016. [CrossRef] [PubMed] [Google Scholar]
  • Simis, M., Adeyemo, B.O., Medeiros, L.F., Miraval, F., Gagliardi, R.J., & Fregni, F. (2013). Motor cortex-induced plasticity by noninvasive brain stimulation: a comparison between transcranial direct current stimulation and transcranial magnetic stimulation. Neuroreport , 24/17, 973–975. DOI: 10.1097/WNR.0000000000000021. [CrossRef] [PubMed] [Google Scholar]
  • Simonetta-Moreau, M. (2014). Non-invasive brain stimulation (NIBS) and motor recovery after stroke. Annals of Physical and Rehabilitation Medicine , 57/8, 530–542. DOI: 10.1016/ [CrossRef] [PubMed] [Google Scholar]
  • Tazoe, T., Endoh, T., Kitamura, T., & Ogata, T. (2014). Polarity specific effects of transcranial direct current stimulation on interhemispheric inhibition. PLoS One , 9/12, e114244. DOI: 10.1371/journal.pone.0114244. [CrossRef] [PubMed] [Google Scholar]
  • Teo, W.P., Muthalib, M., Kidgell, D., Frazer, A., Hendy, A., Goodwill, A.M., & Perrey, S. (2015). Ipsilateral M1 transcranial direct current stimulation increases excitability of the contralateral M1 during an active motor task: Implications for stroke rehabilitation. Annals of Physical and Rehabilitation Medicine , 58, e1–e2. [Google Scholar]
  • Villamar, M.F., Volz, M.S., Bikson, M., Datta, A., Dasilva, A.F., & Fregni, F. (2013). Technique and considerations in the use of 4×1 ring high-definition transcranial direct current stimulation (HD-tDCS). Journal of Visualized Experiments , 77, e50309. DOI: 10.3791/50309. [Google Scholar]
  • Wassermann, E.M. (1998). Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines. Electroencephalography and Clinical Neurophysiology , 108, 1–16. [CrossRef] [PubMed] [Google Scholar]
  • Wiethoff, S., Hamada, M., & Rothwell, J.C. (2014). Variability in response to transcranial direct current stimulation of the motor cortex. Brain Stimulation , 7/3, 468–475. DOI: 10.1016/j.brs.2014.02.003. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.